Read More
Date: 28-12-2016
2066
Date: 30-1-2017
1207
Date: 24-4-2019
1381
|
Metals have several qualities that are unique, such as the ability to conduct electricity, a low ionization energy, and a low electronegativity (so they will give up electrons easily, i.e., they are cations). Their physical properties include a lustrous (shiny) appearance, and they are malleable and ductile. Metals have a crystal structure.
In the 1900's, Paul Drüde came up with the sea of electrons theory by modeling metals as a mixture of atomic cores (atomic cores = positive nuclei + inner shell of electrons) and valence electrons. In this model, the valence electrons are free, delocalized, mobile, and not associated with any particular atom. For example: metallic cations surrounded by a "sea" of electrons. This model assumes that the valence electrons do not interact with each other. This model may account for:
Amazingly, Drude's electron sea model predates Rutherford's nuclear model of the atom and Lewis' octet rule. It is, however, a useful qualitative model of metallic bonding even to this day. As it did for Lewis' octet rule, the quantum revolution of the 1930s told us about the underlying chemistry. Drude's electron sea model assumed that valence electrons were free to move in metals, quantum mechanical calculations told us why this happened.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|