المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

الغلط في شخص المجني عليه
17-4-2017
المجتمع الحديث والإقليمية
15-1-2016
مثالان تطبيقيان على مدرسة التطبيق الصوتي
17-4-2019
الهيئة التركيبيّة
14-9-2016
افات الكتان (الامراض والحشرات التي تصيب الكتان)
2023-05-30
أبو حمزة الشاري
28-12-2015

Brief Historical Sketch  
  
386   12:32 مساءً   date: 25-4-2018
Author : An Answer to Hellman,s Question: Does Category Theory Provide a Framework for Mathematical Structuralism
Book or Source : Philosophia Mathematica
Page and Part : ...


Read More
Date: 25-4-2018 439
Date: 4-2-2021 345
Date: 25-4-2018 665

Brief Historical Sketch

It is difficult to do justice to the short but intricate history of the field. In particular it is not possible to mention all those who have contributed to its rapid development. With this word of caution out of the way, we will look at some of the main historical threads.

Categories, functors, natural transformations, limits and colimits appeared almost out of nowhere in a paper by Eilenberg & Mac Lane (1945) entitled “General Theory of Natural Equivalences.” We say “almost,” because their earlier paper (1942) contains specific functors and natural transformations at work, limited to groups. A desire to clarify and abstract their 1942 results led Eilenberg & Mac Lane to devise category theory. The central notion at the time, as their title indicates, was that of natural transformation. In order to give a general definition of the latter, they defined functor, borrowing the term from Carnap, and in order to define functor, they borrowed the word ‘category’ from the philosophy of Aristotle, Kant, and C. S. Peirce, but redefining it mathematically.

After their 1945 paper, it was not clear that the concepts of category theory would amount to more than a convenient language; this indeed was the status quo for about fifteen years. Category theory was employed in this manner by Eilenberg & Steenrod (1952), in an influential book on the foundations of algebraic topology, and by Cartan & Eilenberg (1956), in a ground breaking book on homological algebra. (Curiously, although Eilenberg & Steenrod defined categories, Cartan & Eilenberg simply assumed them!) These books allowed new generations of mathematicians to learn algebraic topology and homological algebra directly in the categorical language, and to master the method of diagrams. Indeed, without the method of diagram chasing, many results in these two books seem inconceivable, or at the very least would have required a considerably more intricate presentation.

The situation changed radically with Grothendieck's (1957) landmark paper entitled “Sur quelques points d'algèbre homologique”, in which the author employed categories intrinsically to define and construct more general theories which he (Grothendieck 1957) then applied to specific fields, e.g., to algebraic geometry. Kan (1958) showed that adjoint functors subsume the important concepts of limits and colimits and could capture fundamental concepts in other areas (in his case, homotopy theory).

At this point, category theory became more than a convenient language, by virtue of two developments.

  1. Employing the axiomatic method and the language of categories, Grothendieck (1957) defined in an abstract fashion types of categories, e.g., additive and Abelian categories, showed how to perform various constructions in these categories, and proved various results about them. In a nutshell, Grothendieck showed how to develop part of homological algebra in an abstract setting of this sort. From then on, a specific category of structures, e.g., a category of sheaves over a topological space X, could be seen as a token of an abstract category of a certain type, e.g., an Abelian category. One could therefore immediately see how the methods of, e.g., homological algebra could be applied to, for instance, algebraic geometry. Furthermore, it made sense to look for other types of abstract categories, ones that would encapsulate the fundamental and formal aspects of various mathematical fields in the same way that Abelian categories encapsulated fundamental aspects of homological algebra.
  2. Thanks in large part to the efforts of Freyd and Lawvere, category theorists gradually came to see the pervasiveness of the concept of adjoint functors. Not only does the existence of adjoints to given functors permit definitions of abstract categories (and presumably those which are defined by such means have a privileged status) but as we mentioned earlier, many important theorems and even theories in various fields can be seen as equivalent to the existence of specific functors between particular categories. By the early 1970's, the concept of adjoint functors was seen as central to category theory.

With these developments, category theory became an autonomous field of research, and pure category theory could be developed. And indeed, it did grow rapidly as a discipline, but also in its applications, mainly in its source contexts, namely algebraic topology and homological algebra, but also in algebraic geometry and, after the appearance of Lawvere's Ph. D thesis, in universal algebra. This thesis also constitutes a landmark in this history of the field, for in it Lawvere proposed the category of categories as a foundation for category theory, set theory and, thus, the whole of mathematics, as well as using categories for the study of the logical aspects of mathematics.

Over the course of the 1960's, Lawvere outlined the basic framework for an entirely original approach to logic and the foundations of mathematics. He achieved the following:

  • Axiomatized the category of sets (Lawvere 1964) and of categories (Lawvere 1966);
  • Gave a categorical description of theories that was independent of syntactical choices and sketched how completeness theorems for logical systems could be obtained by categorical methods (Lawvere 1967);
  • Characterized Cartesian closed categories and showed their connections to logical systems and various logical paradoxes (Lawvere 1969);
  • Showed that the quantifiers and the comprehension schemes could be captured as adjoint functors to given elementary operations (Lawvere 1966, 1969, 1970, 1971);
  • Argued that adjoint functors should generally play a major foundational role through the notion of “categorical doctrines” (Lawvere 1969).

Meanwhile, Lambek (1968, 1969, 1972) described categories in terms of deductive systems and employed categorical methods for proof-theoretical purposes.

All this work culminated in another notion, thanks to Grothendieck and his school: that of a topos. Even though toposes appeared in the 1960's, in the context of algebraic geometry, again from the mind of Grothendieck, it was certainly Lawvere and Tierney's (1972) elementary axiomatization of a topos which gave impetus to its attaining foundational status. Very roughly, an elementary topos is a category possessing a logical structure sufficiently rich to develop most of “ordinary mathematics”, that is, most of what is taught to mathematics undergraduates. As such, an elementary topos can be thought of as a categorical theory of sets. But it is also a generalized topological space, thus providing a direct connection between logic and geometry. (For more on the history of categorical logic, see Marquis & Reyes 2012, Bell 2005.)

The 1970s saw the development and application of the topos concept in many different directions. The very first applications outside algebraic geometry were in set theory, where various independence results were recast in terms of topos (Tierney 1972, Bunge 1974, but also Blass & Scedrov 1989, Blass & Scedrov 1992, Freyd 1980, Mac Lane & Moerdijk 1992, Scedrov 1984). Connections with intuitionistic and, more generally constructive mathematics were noted early on, and toposes are still used to investigate models of various aspects of intuitionism and constructivism (Lambek & Scott 1986, Mac Lane & Moerdijk 1992, Van der Hoeven & Moerdijk 1984a, 1984b, 1984c, Moerdijk 1984, Moerdijk 1995a, Moerdijk 1998, Moerdijk & Palmgren 1997, Moerdijk & Palmgren 2002), Palmgren 2012. For more on the history of topos theory, see McLarty (1992).

More recently, topos theory has been employed to investigate various forms of constructive mathematics or set theory (Joyal & Moerdijk 1995, Taylor 1996, Awodey 2008), recursiveness, and models of higher-order type theories generally. The introduction of the so-called “effective topos” and the search for axioms for synthetic domain theory are worth mentioning (Hyland 1982, Hyland 1988, 1991, Hyland et al. 1990, McLarty 1992, Jacobs 1999, Van Oosten 2008, Van Oosten 2002 and the references therein). Lawvere's early motivation was to provide a new foundation for differential geometry, a lively research area which is now called “synthetic differential geometry” (Lawvere 2000, 2002, Kock 2006, Bell 1988, 1995, 1998, 2001, Moerdijk & Reyes 1991). This is only the tip of the iceberg; toposes could prove to be for the 21st century what Lie groups were to the 20th century.

From the 1980s to the present, category theory has found new applications. In theoretical computer science, category theory is now firmly rooted, and contributes, among other things, to the development of new logical systems and to the semantics of programming. (Pitts 2000, Plotkin 2000, Scott 2000, and the references therein). Its applications to mathematics are becoming more diverse, even touching on theoretical physics, which employs higher-dimensional category theory — which is to category theory what higher-dimensional geometry is to plane geometry — to study the so-called “quantum groups” and quantum field theory (Majid 1995, Baez & Dolan 2001 and other publications by these authors).


  • –––, 2004, “An Answer to Hellman's Question: Does Category Theory Provide a Framework for Mathematical Structuralism”, Philosophia Mathematica, 12: 54–64.
  • –––, 2006, Category Theory, Oxford: Clarendon Press.
  • –––, 2007, “Relating First-Order Set Theories and Elementary Toposes”, The Bulletin of Symbolic, 13 (3): 340–358.
  • –––, 2008, “A Brief Introduction to Algebraic Set Theory”, The Bulletin of Symbolic, 14 (3): 281–298.
  • Awodey, S., et al., 2013, Homotopy Type Theory: Univalent Foundations of Mathematics, The Univalent Foundations Program.
  • Awodey, S. & Butz, C., 2000, “Topological Completeness for Higher Order Logic”, Journal of Symbolic Logic, 65 (3): 1168–1182.
  • Awodey, S. & Reck, E. R., 2002, “Completeness and Categoricity I. Nineteen-Century Axiomatics to Twentieth-Century Metalogic”, History and Philosophy of Logic, 23 (1): 1–30.
  • –––, 2002, “Completeness and Categoricity II. Twentieth-Century Metalogic to Twenty-first-Century Semantics”, History and Philosophy of Logic, 23 (2): 77–94.
  • Awodey, S. & Warren, M., 2009, “Homotopy theoretic Models of Identity Types”, Mathematical Proceedings of the Cambridge Philosophical Society, 146 (1): 45–55.
  • Baez, J., 1997, “An Introduction to n-Categories”, Category Theory and Computer Science, Lecture Notes in Computer Science (Volume 1290), Berlin: Springer-Verlag, 1–33.
  • Baez, J. & Dolan, J., 1998a, “Higher-Dimensional Algebra III. n-Categories and the Algebra of Opetopes”, Advances in Mathematics, 135: 145–206.
  • –––, 1998b, “Categorification”, Higher Category Theory (Contemporary Mathematics, Volume 230), Ezra Getzler and Mikhail Kapranov (eds.), Providence: AMS, 1–36.
  • –––, 2001, “From Finite Sets to Feynman Diagrams”, Mathematics Unlimited – 2001 and Beyond, Berlin: Springer, 29–50.
  • Baez, J. & Lauda, A.D., 2011, “A Pre-history of n-Categorical Physics”, Deep Beauty: Understanding the Quantum World Through Mathematical Innovation, H. Halvorson, ed., Cambridge: Cambridge University Press, 13–128.
  • Baez, J. & May, P. J., 2010, Towards Higher Category Theory, Berlin: Springer.
  • Baez, J. & Stay, M., 2010, “Physics, Topology, Logic and Computation: a Rosetta Stone”, New Structures for Physics (Lecture Notes in Physics 813), B. Coecke (ed.), New York, Springer: 95–172.
  • Baianu, I. C., 1987, “Computer Models and Automata Theory in Biology and Medecine”, in Witten, Matthew, Eds. Mathematical Modelling, Vol. 7, 1986, chapter 11, Pergamon Press, Ltd., 1513–1577.
  • Bain, J., 2013, “Category-theoretic Structure and Radical Ontic Structural Realism”, Synthese, 190: 1621–1635.
  • Barr, M. & Wells, C., 1985, Toposes, Triples and Theories, New York: Springer-Verlag.
  • –––, 1999, Category Theory for Computing Science, Montreal: CRM.
  • Batanin, M., 1998, “Monoidal Globular Categories as a Natural Environment for the Theory of Weak n-Categories”, Advances in Mathematics, 136: 39–103.
  • Bell, J. L., 1981, “Category Theory and the Foundations of Mathematics”, British Journal for the Philosophy of Science, 32: 349–358.
  • –––, 1982, “Categories, Toposes and Sets”, Synthese, 51 (3): 293–337.
  • –––, 1986, “From Absolute to Local Mathematics”, Synthese, 69 (3): 409–426.
  • –––, 1988, “Infinitesimals”, Synthese, 75 (3): 285–315.
  • –––, 1988, Toposes and Local Set Theories: An Introduction, Oxford: Oxford University Press.
  • –––, 1995, “Infinitesimals and the Continuum”, Mathematical Intelligencer, 17 (2): 55–57.
  • –––, 1998, A Primer of Infinitesimal Analysis, Cambridge: Cambridge University Press.
  • –––, 2001, “The Continuum in Smooth Infinitesimal Analysis”, Reuniting the Antipodes — Constructive and Nonstandard Views on the Continuum (Synthese Library, Volume 306), Dordrecht: Kluwer, 19–24.
  • –––, 2005, “The Development of Categorical Logic”, in Handbook of Philosophical Logic(Volume 12), 2nd ed., D.M. Gabbay, F. Guenthner (eds.), Dordrecht: Springer, pp. 279–362.
  • Birkoff, G. & Mac Lane, S., 1999, Algebra, 3rd ed., Providence: AMS.
  • Blass, A., 1984, “The Interaction Between Category Theory and Set Theory”, in Mathematical Applications of Category Theory (Volume 30), Providence: AMS, 5–29.
  • Blass, A. & Scedrov, A., 1983, “Classifying Topoi and Finite Forcing”, Journal of Pure and Applied Algebra, 28: 111–140.
  • –––, 1989, Freyd's Model for the Independence of the Axiom of Choice, Providence: AMS.
  • –––, 1992, “Complete Topoi Representing Models of Set Theory”, Annals of Pure and Applied Logic , 57 (1): 1–26.
  • Blute, R. & Scott, P., 2004, “Category Theory for Linear Logicians”, in Linear Logic in Computer Science, T. Ehrhard, P. Ruet, J-Y. Girard, P. Scott, eds., Cambridge: Cambridge University Press, 1–52.
  • Boileau, A. & Joyal, A., 1981, “La logique des topos”, Journal of Symbolic Logic, 46 (1): 6–16.
  • Borceux, F., 1994, Handbook of Categorical Algebra, 3 volumes, Cambridge: Cambridge University Press.
  • Brading, K. & Landry, E., 2006, “Scientific Structuralism: Presentation and Representation”, Philosophy of Science, 73: 571–581.
  • Brown, R. & Porter, T., 2006, “Category Theory: an abstract setting for analogy and comparison”, What is Category Theory?, G. Sica, ed., Monza: Polimetrica: 257–274.
  • Bunge, M., 1974, “Topos Theory and Souslin's Hypothesis”, Journal of Pure and Applied Algebra, 4: 159–187.
  • –––, 1984, “Toposes in Logic and Logic in Toposes”, Topoi, 3 (1): 13–22.
  • Caramello, O., 2011, “A Characterization Theorem for Geometric Logic”, Annals of Pure and Applied Logic,162, 4: 318–321.
  • –––, 2012a, “Universal Models and Definability”, Mathematical Proceedings of the Cambridge Philosophical Society, 152 (2): 279–302.
  • –––, 2012b, “Syntactic Characterizations of Properties of Classifying Toposes”, Theory and Applications of Categories, 26 (6): 176–193.
  • Carter, J., 2008, “Categories for the working mathematician: making the impossible possible”, Synthese, 162 (1): 1–13.
  • Cheng, E. & Lauda, A., 2004, Higher-Dimensional Categories: an illustrated guide book, available at: http://cheng.staff.shef.ac.uk/guidebook/index.html
  • Cockett, J. R. B. & Seely, R. A. G., 2001, “Finite Sum-product Logic”, Theory and Applications of Categories (electronic), 8: 63–99.
  • Coecke, B., 2011, “A Universe of Processes and Some of its Guises”, Deep Beauty: Understanding the Quantum World through Mathematical Innovation, Cambridge: Cambridge University Press: 129–186.
  • Couture, J. & Lambek, J., 1991, “Philosophical Reflections on the Foundations of Mathematics”, Erkenntnis, 34 (2): 187–209.
  • –––, 1992, “Erratum:”Philosophical Reflections on the Foundations of Mathematics“”, Erkenntnis, 36 (1): 134.
  • Crole, R. L., 1994, Categories for Types, Cambridge: Cambridge University Press.
  • Dieudonné, J. & Grothendieck, A., 1960 [1971], Éléments de Géométrie Algébrique, Berlin: Springer-Verlag.
  • Döring, A., 2011, “The Physical Interpretation of Daseinisation”, Deep Beauty: Understanding the Quantum World through Mathematical Innovation, Cambridge: Cambridge University Press: 207-238.
  • Ehresmann, A. & Vanbremeersch, J.-P., 2007, Memory Evolutive Systems: Hierarchy, Emergence, Cognition, Amsterdam: Elsevier
  • –––, 1987, “Hierarchical Evolutive Systems: a Mathematical Model for Complex Systems”, Bulletin of Mathematical Biology, 49 (1): 13–50.
  • Eilenberg, S. & Cartan, H., 1956, Homological Algebra, Princeton: Princeton University Press.
  • Eilenberg, S. & Mac Lane, S., 1942, “Group Extensions and Homology”, Annals of Mathematics, 43: 757–831.
  • –––, 1945, “General Theory of Natural Equivalences”, Transactions of the American Mathematical Society, 58: 231–294.
  • Eilenberg, S. & Steenrod, N., 1952, Foundations of Algebraic Topology, Princeton: Princeton University Press.
  • Ellerman, D., 1988, “Category Theory and Concrete Universals”, Erkenntnis, 28: 409–429.
  • Feferman, S., 1977, “Categorical Foundations and Foundations of Category Theory”, Logic, Foundations of Mathematics and Computability, R. Butts (ed.), Reidel, 149–169.
  • –––, 2004, “Typical Ambiguity: trying to have your cake and eat it too”, One Hundred Years of Russell's Paradox, G. Link (ed.), Berlin: De Gruyter, 135–151.
  • Freyd, P., 1964, Abelian Categories. An Introduction to the Theory of Functors, New York: Harper & Row.
  • –––, 1965, “The Theories of Functors and Models”. Theories of Models, Amsterdam: North Holland, 107–120.
  • –––, 1972, “Aspects of Topoi”, Bulletin of the Australian Mathematical Society, 7: 1–76.
  • –––, 1980, “The Axiom of Choice”, Journal of Pure and Applied Algebra, 19: 103–125.
  • –––, 1987, “Choice and Well-Ordering”, Annals of Pure and Applied Logic, 35 (2): 149–166.
  • –––, 1990, Categories, Allegories, Amsterdam: North Holland.
  • –––, 2002, “Cartesian Logic”, Theoretical Computer Science, 278 (1–2): 3–21.
  • Freyd, P., Friedman, H. & Scedrov, A., 1987, “Lindembaum Algebras of Intuitionistic Theories and Free Categories”, Annals of Pure and Applied Logic, 35 (2): 167–172.
  • Galli, A. & Reyes, G. & Sagastume, M., 2000, “Completeness Theorems via the Double Dual Functor”, Studia Logical, 64 (1): 61–81.
  • Ghilardi, S., 1989, “Presheaf Semantics and Independence Results for some Non-classical first-order logics”, Archive for Mathematical Logic, 29 (2): 125–136.
  • Ghilardi, S. & Zawadowski, M., 2002, Sheaves, Games & Model Completions: A Categorical Approach to Nonclassical Porpositional Logics, Dordrecht: Kluwer.
  • Goldblatt, R., 1979, Topoi: The Categorical Analysis of Logic, Studies in logic and the foundations of mathematics, Amsterdam: Elsevier.
  • Grothendieck, A., 1957, “Sur Quelques Points d'algèbre homologique”, Tohoku Mathematics Journal, 9: 119–221.
  • Grothendieck, A. et al., Séminaire de Géométrie Algébrique, Vol. 1–7, Berlin: Springer-Verlag.
  • Hatcher, W. S., 1982, The Logical Foundations of Mathematics, Oxford: Pergamon Press.
  • Healy, M. J., 2000, “Category Theory Applied to Neural Modeling and Graphical Representations”, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks: IJCNN200, Como, vol. 3, M. Gori, S-I. Amari, C. L. Giles, V. Piuri, eds., IEEE Computer Science Press, 35–40.
  • Healy, M. J., & Caudell, T. P., 2006, “Ontologies and Worlds in Category Theory: Implications for Neural Systems”,Axiomathes, 16 (1–2): 165–214.
  • Hellman, G., 2003, “Does Category Theory Provide a Framework for Mathematical Structuralism?”, Philosophia Mathematica, 11 (2): 129–157.
  • –––, 2006, “Mathematical Pluralism: the case of smooth infinitesimal analysis”, Journal of Philosophical Logic, 35 (6): 621–651.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.