المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

أمثلة لمجالات العمل- المجالات البشرية- التعليم
14-6-2022
وظيفة الرأي العام
10-7-2019
layering (n.)
2023-10-02
هل يوجد من الحشرات من يعتني بالصغار من غير الحشرات الاجتماعية؟
25-2-2021
اعتام عدسة العين Cataract
8-10-2017
الثنائية وعلاقتها بالمناسبة الطبيعة
26-7-2016

Category Theory  
  
398   12:22 مساءً   date: 25-4-2018
Author : Category Theory
Book or Source : Strong Conceptual Completeness for First Order Logic
Page and Part : ...

Category Theory

Category theory has come to occupy a central position in contemporary mathematics and theoretical computer science, and is also applied to mathematical physics. Roughly, it is a general mathematical theory of structures and of systems of structures. As category theory is still evolving, its functions are correspondingly developing, expanding and multiplying. At minimum, it is a powerful language, or conceptual framework, allowing us to see the universal components of a family of structures of a given kind, and how structures of different kinds are interrelated. Category theory is both an interesting object of philosophical study, and a potentially powerful formal tool for philosophical investigations of concepts such as space, system, and even truth. It can be applied to the study of logical systems in which case category theory is called “categorical doctrines” at the syntactic, proof-theoretic, and semantic levels. Category theory is an alternative to set theory as a foundation for mathematics. As such, it raises many issues about mathematical ontology and epistemology. Category theory thus affords philosophers and logicians much to use and reflect upon.


  • –––, 1988, “Strong Conceptual Completeness for First Order Logic”, Annals of Pure and Applied Logic, 40: 167–215.
  • –––, 1997a, “Generalized Sketches as a Framework for Completeness Theorems I”, Journal of Pure and Applied Algebra, 115 (1): 49–79.
  • –––, 1997b, “Generalized Sketches as a Framework for Completeness Theorems II”, Journal of Pure and Applied Algebra, 115 (2): 179–212.
  • –––, 1997c, “Generalized Sketches as a Framework for Completeness Theorems III”, Journal of Pure and Applied Algebra, 115 (3): 241–274.
  • –––, 1998, “Towards a Categorical Foundation of Mathematics”, Lecture Notes in Logic(Volume 11), Berlin: Springer, 153–190.
  • –––, 1999, “On Structuralism in Mathematics”, Language, Logic and Concepts, Cambridge: MIT Press, 43–66.
  • Makkai, M. & Paré, R., 1989, Accessible Categories: the Foundations of Categorical Model Theory, Contemporary Mathematics 104, Providence: AMS.
  • Makkai, M. & Reyes, G., 1977, First-Order Categorical Logic, Springer Lecture Notes in Mathematics 611, New York: Springer.
  • –––, 1995, “Completeness Results for Intuitionistic and Modal Logic in a Categorical Setting”, Annals of Pure and Applied Logic, 72 (1): 25–101.
  • Marquis, J.-P., 1993, “Russell's Logicism and Categorical Logicisms”, Russell and Analytic Philosophy, A. D. Irvine & G. A. Wedekind, (eds.), Toronto, University of Toronto Press, 293–324.
  • –––, 1995, “Category Theory and the Foundations of Mathematics: Philosophical Excavations”, Synthese, 103: 421–447.
  • –––, 2000, “Three Kinds of Universals in Mathematics?”, in Logical Consequence: Rival Approaches and New Studies in Exact Philosophy: Logic, Mathematics and Science, Vol. II, B. Brown & J. Woods (eds.), Oxford: Hermes, 191–212.
  • –––, 2006, “Categories, Sets and the Nature of Mathematical Entities”, in The Age of Alternative Logics. Assessing philosophy of logic and mathematics today, J. van Benthem, G. Heinzmann, Ph. Nabonnand, M. Rebuschi, H. Visser (eds.), Springer, 181–192.
  • –––, 2009, From a Geometrical Point of View: A Study in the History and Philosophy of Category Theory, Berlin: Springer.
  • –––, 2013, “Mathematical Forms and Forms of Mathematics: leaving the shores of extensional mathematics”, Synthese, 190 (12): 2141–2164.
  • Marquis, J.-P. & Reyes, G., 2012, “The History of Categorical Logic: 1963–1977”, Handbook of the History of Logic, Vol. 6, D. Gabbay & J. Woods, eds., Amsterdam: Elsevier, 689-800.
  • McLarty, C., 1986, “Left Exact Logic”, Journal of Pure and Applied Algebra, 41 (1): 63–66.
  • –––, 1990, “Uses and Abuses of the History of Topos Theory”, British Journal for the Philosophy of Science, 41: 351–375.
  • –––, 1991, “Axiomatizing a Category of Categories”, Journal of Symbolic Logic, 56 (4): 1243–1260.
  • –––, 1992, Elementary Categories, Elementary Toposes, Oxford: Oxford University Press.
  • –––, 1993, “Numbers Can be Just What They Have to”, Noûs, 27: 487–498.
  • –––, 1994, “Category Theory in Real Time”, Philosophia Mathematica, 2 (1): 36–44.
  • –––, 2004, “Exploring Categorical Structuralism”, Philosophia Mathematica, 12: 37–53.
  • –––, 2005, “Learning from Questions on Categorical Foundations”, Philosophia Mathematica, 13 (1): 44–60.
  • –––, 2006, “Emmy Noether's set-theoretic topology: from Dedekind to the rise of functors”, The Architecture of Modern Mathematics, J.J. Gray & J. Ferreiros, Oxford: Oxford University Press, 187–208.
  • –––, 2011, “Recent Debate over Categorical Foundations”, in Foundational Theories of Classical and Constructive Mathematics, G. Sommaruga, ed., New York: Springer: 145–154.
  • Moerdijk, I., 1984, “Heine-Borel does not imply the Fan Theorem”, Journal of Symbolic Logic, 49 (2): 514–519.
  • –––, 1995a, “A Model for Intuitionistic Non-standard Arithmetic”, Annals of Pure and Applied Logic, 73 (1): 37–51.
  • –––, 1998, “Sets, Topoi and Intuitionism”, Philosophia Mathematica, 6 (2): 169–177.
  • Moerdijk, I. & Palmgren, E., 1997, “Minimal Models of Heyting Arithmetic”, Journal of Symbolic Logic, 62 (4): 1448–1460.
  • –––, 2002, “Type Theories, Toposes and Constructive Set Theory: Predicative Aspects of AST”, Annals of Pure and Applied Logic, 114 (1–3): 155–201.
  • Moerdijk, I. & Reyes, G., 1991, Models for Smooth Infinitesimal Analysis, New York: Springer-Verlag.
  • Palmgren, E., 2012, “Constructivist and Structuralist Foundations: Bishop's and Lawvere's Theories of Sets”, Annals of Pure and Applied Logic, 63: 1384–1399.
  • Pareigis, B., 1970, Categories and Functors, New York: Academic Press.
  • Pedicchio, M. C. & Tholen, W., 2004, Categorical Foundations, Cambridge: Cambridge University Press.
  • Peirce, B., 1991, Basic Category Theory for Computer Scientists, Cambridge: MIT Press.
  • Pitts, A. M., 1987, “Interpolation and Conceptual Completeness for Pretoposes via Category Theory”, Mathematical Logic and Theoretical Computer Science (Lecture Notes in Pure and Applied Mathematics, Volume 106), New York: Dekker, 301–327.
  • –––, 1989, “Conceptual Completeness for First-order Intuitionistic Logic: an Application of Categorical Logic”, Annals of Pure and Applied Logic, 41 (1): 33–81.
  • –––, 1992, “On an Interpretation of Second-order Quantification in First-order Propositional Intuitionistic Logic”, Journal of Symbolic Logic, 57 (1): 33–52.
  • –––, 2000, “Categorical Logic”, Handbook of Logic in Computer Science, Vol.5, Oxford: Oxford Unversity Press, 39–128.
  • Pitts, A. M. & Taylor, P., 1989, “A Note of Russell's Paradox in Locally Cartesian Closed Categories”, Studia Logica, 48 (3): 377–387.
  • Plotkin, B., 2000, “Algebra, Categories and Databases”, Handbook of Algebra, Vol. 2, Amsterdam: Elsevier, 79–148.
  • Porter, T., 2004, “Interpreted Systems and Kripke Models for Multiagent Systems from a Categorical Perspective”, Theoretical Computer Science, 323 (1–3): 235–266.
  • Reyes, G., 1991, “A Topos-theoretic Approach to Reference and Modality”, Notre Dame Journal of Formal Logic, 32 (3): 359–391.
  • –––, 1974, “From Sheaves to Logic”, in Studies in Algebraic Logic, A. Daigneault, ed., Providence: AMS.
  • Reyes, G. & Zawadowski, M., 1993, “Formal Systems for Modal Operators on Locales”, Studia Logica, 52 (4): 595–613.
  • Reyes, G. & Zolfaghari, H., 1991, “Topos-theoretic Approaches to Modality”, Category Theory (Como 1990) (Lecture Notes in Mathematics, Volume 1488), Berlin: Springer, 359–378.
  • –––, 1996, “Bi-Heyting Algebras, Toposes and Modalities”, Journal of Philosophical Logic, 25 (1): 25–43.
  • Rodabaugh, S. E. & Klement, E. P., eds., Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets (Trends in Logic, Volume 20), Dordrecht: Kluwer.
  • Scedrov, A., 1984, Forcing and Classifying Topoi, Providence: AMS.
  • Scott, P.J., 2000, “Some Aspects of Categories in Computer Science”, Handbook of Algebra, Vol. 2, Amsterdam: North Holland, 3–77.
  • Seely, R. A. G., 1984, “Locally Cartesian Closed Categories and Type Theory”, Mathematical Proceedings of the Cambridge Mathematical Society, 95 (1): 33–48.
  • Shapiro, S., 2005, “Categories, Structures and the Frege-Hilbert Controversy: the Status of Metamathematics”, Philosophia Mathematica, 13 (1): 61–77.
  • Sica, G., ed., 2006, What is Category Theory?, Firenze: Polimetrica.
  • Simpson, C., 2011, Homotopy Theory of Higher Categories, Cambridge: Cambridge University Press.
  • Taylor, P., 1996, “Intuitionistic sets and Ordinals”, Journal of Symbolic Logic, 61: 705–744.
  • –––, 1999, Practical Foundations of Mathematics, Cambridge: Cambridge University Press.
  • Tierney, M., 1972, “Sheaf Theory and the Continuum Hypothesis”, Toposes, Algebraic Geometry and Logic, F.W. Lawvere (ed.), Springer Lecture Notes in Mathematics 274, 13–42.
  • Van Oosten, J., 2002, “Realizability: a Historical Essay”, Mathematical Structures in Computer Science, 12 (3): 239–263.
  • –––, 2008, Realizability: an Introduction to its Categorical Side (Studies in Logic and the Foundations of Mathematics, Volume 152), Amsterdam: Elsevier.
  • Van der Hoeven, G. & Moerdijk, I., 1984a, “Sheaf Models for Choice Sequences”, Annals of Pure and Applied Logic, 27 (1): 63–107.
  • –––, 1984b, “On Choice Sequences determined by Spreads”, Journal of Symbolic Logic, 49 (3): 908–916.
  • –––, 1984c, “Constructing Choice Sequences for Lawless Sequences of Neighbourhood Functions”, Models and Sets (Lecture Notes in Mathematics, Volume 1103), Berlin: Springer, 207–234.



الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.