تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Einstein Specific Heat
المؤلف:
Sidney B. Cahn, Gerald D. Mahan And Boris E. Nadgorny
المصدر:
A GUIDE TO PHYSICS PROBLEMS
الجزء والصفحة:
part 2 , p 46
26-8-2016
1504
Einstein Specific Heat
a) Derive an expression for the average energy at a temperature τ of a quantum harmonic oscillator having natural frequency ω.
b) Assuming unrealistically (as Einstein did) that the normal-mode vibrations of a solid all have the same natural frequency (call it ωE), find an expression for the heat capacity of an insulating solid.
c) Find the high-temperature limit for the heat capacity as calculated in (b) and use it to obtain a numerical estimate for the heat capacity of a V = 5 cm3 piece of an insulating solid having a number density of n = 6 × 1028 atoms/m3. Would you expect this to be a poor or a good estimate for the high-temperature heat capacity of the material? Please give reasons.
d) Find the low-temperature limit of the heat capacity and explain why it is reasonable in terms of the model.
SOLUTION
a) For a harmonic oscillator with frequency ω the energy
(1)
where
So,
(2)
b) If we assume that the N atoms of the solid each have three degrees of freedom and the same frequency ωE, then the total energy
(3)
The specific heat
(4)
c) In the high-temperature limit of (4) (hωE << τ), we have
(5)
In regular units
which corresponds to the law of Dulong and Petit, does not depend on the composition of the material but only on the total number of atoms and should be a good approximation at high temperatures, especially for one-component elements. Prom the numbers in the problem,
(6)
Therefore,
(7)
Note that, at high enough temperatures. Anharmonic corrections are usually negative and linearly proportional to temperature.
d) At low temperatures (4) becomes
(8)
The heat capacity goes to zero as exp (-hωE/τ) at τ → 0, whereas the experimental results give . The faster falloff of the heat capacity is due to the “freezing out” of the oscillations at τ → 0 given the single natural frequency ωE.