1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : مواضيع عامة في الفيزياء : مواضيع اخرى :

Pendulum Clock in Non-inertial Frame

المؤلف:  Sidney B. Cahn Boris E. Nadgorny

المصدر:  A GUIDE TO PHYSICS PROBLEMS

الجزء والصفحة:  part 1 , p 25

1-8-2016

1085

Pendulum Clock in Non-inertial Frame

An off-duty physicist designs a pendulum clock for use on a gravity-free spacecraft. The mechanism is a simple pendulum (mass m at the end of a massless rod of length l) hung from a pivot, about which it can swing

Figure 1.1 

in a plane. To provide artificial gravity, the pivot is forced to rotate at a frequency ω in a circle of radius R in the same plane as the pendulum arm (see Figure 1.1). Show that this succeeds, i.e., that the possible motions θ(t) of this pendulum are identical to the motions θ(t) of a simple pendulum in a uniform gravitational field of strength g = ω2R, not just for small oscillations, but for any amplitude, and for any length l, even l > R.

SOLUTION

Calculate the Lagrangian of the mass m and derive the equation of motion for θ(t) (see Figure 1.2). Start with the equations for the x and y positions of the mass

and compose

Figure 1.2

Applying Lagrange’s equations gives

which, for g = ω2R, corresponds, as required, to the equation of motion for a pendulum  in a uniform gravitational field.

EN

تصفح الموقع بالشكل العمودي