النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
Production Of Heterologous Proteins
المؤلف:
Alexander N. Glazer , Hiroshi Nikaido
المصدر:
MICROBIAL BIOTECHNOLOGY (Fundamentals of Applied Microbiology)
الجزء والصفحة:
2nd Edition , p46-47
2025-03-01
119
One of the most dramatic and immediate impacts of genetic engineering was the production in bacteria of large amounts of proteins encoded by human genes. In 1982, insulin, expressed from human insulin genes on plasmids inserted into Escherichia coli, was the first genetically engineered therapeutic agent to be approved for clinical use in humans. Bacterially produced insulin, used widely in the treatment of diabetes, is indistinguishable in its structure and clinical effects from natural insulin. Human growth hormone (hGH), a protein made naturally by the pituitary gland ,was the second such product. Inadequate secretion of hGH in children results in dwarfism. Before the advent of recombinant DNA technology, hGH was prepared from pituitaries removed from human cadavers .The supply of such preparations was limited and the cost prohibitive. Furthermore, there were dangers in their administration that led to withdrawal from the market. Some patients treated with injections of pituitary hGH developed a disease caused by a contaminating slow virus, Jakob–Creutzfeldt syndrome, which leads to dementia and death. hGH can be produced in genetically engineered E. coli in large amounts, at relatively little cost, and free from such contaminants.
Human tissue plasminogen activator (tPA), a proteolytic enzyme (a “serine” protease) with an affinity for fibrin clots, is another therapeutic agent made available in large amounts as a consequence of recombinant DNA technology. At the surface of fibrin clots ,tPA cleaves a single peptide bond in plasminogen to form another serine protease, plasmin ,which then degrades the clots. This clot-degrading property of tPA makes it a life-saving drug in the treatment of patients with acute myocardial infarction(damage to heart muscle due to arterial blockage).
Recombinant human insulin and hGH offered impressive proof of the clinical efficacy and safety of human proteins made by engineered microorganisms. As exemplified by the list inTable1,the list of recombinant human gene products expressed in bacteria or fungi continues to grow rapidly.
Table1.Examples of human proteins cloned in E.coli: their biological functions and current or envisaged therapeutic use