1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظريات ومبرهنات :

Eilenberg-Steenrod Axioms

المؤلف:  المرجع الالكتروني للمعلوماتيه

المصدر:  www.almerja.com

الجزء والصفحة:  ...

20-2-2022

533

Eilenberg-Steenrod Axioms

A family of functors H_n(·) from the category of pairs of topological spaces and continuous maps, to the category of Abelian groups and group homomorphisms satisfies the Eilenberg-Steenrod axioms if the following conditions hold.

1. long exact sequence of a pair axiom. For every pair (X,A), there is a natural long exact sequence

 ...->H_n(A)->H_n(X)->H_n(X,A)->H_(n-1)(A)->...,

where the map H_n(A)->H_n(X) is induced by the inclusion map A->X and H_n(X)->H_n(X,A) is induced by the inclusion map (X,phi)->(X,A). The map H_n(X,A)->H_(n-1)(A) is called the boundary map.

2. homotopy axiom. If f:(X,A)->(Y,B) is homotopic to g:(X,A)->(Y,B), then their induced maps f_*:H_n(X,A)->H_n(Y,B) and g_*:H_n(X,A)->H_n(Y,B) are the same.

3. excision axiom. If X is a space with subspaces A and U such that the set closure of U is contained in the interior of A, then the inclusion map (XU,AU)->(X,A) induces an isomorphism H_n(X U,A U)->H_n(X,A).

4. dimension axiom. Let X be a single point space. H_n(X)=0 unless n=0, in which case H_0(X)=G where G are some groups. The H_0 are called the coefficients of the homology theory H(·).

These are the axioms for a generalized homology theory. For a cohomology theory, instead of requiring that H(·) be a functor, it is required to be a co-functor (meaning the induced map points in the opposite direction). With that modification, the axioms are essentially the same (except that all the induced maps point backwards).

 

EN

تصفح الموقع بالشكل العمودي