1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التبلوجيا :

Banach Space

المؤلف:  Renteln, P. and Dundes, A.

المصدر:  . "Foolproof: A Sampling of Mathematical Folk Humor." Notices Amer. Math. Soc. 52,

الجزء والصفحة:  24-34

31-7-2021

1800

Banach Space

A Banach space is a complete vector space B with a norm ||·||. Two norms ||·||_((1)) and ||·||_((2)) are called equivalent if they give the same topology, which is equivalent to the existence of constants c and C such that

 ||v||_((1))<=c||v||_((2))

(1)

and

 ||v||_((2))<=C||v||_((1))

(2)

hold for all v.

In the finite-dimensional case, all norms are equivalent. An infinite-dimensional space can have many different norms.

A basic example is n-dimensional Euclidean space with the Euclidean norm. Usually, the notion of Banach space is only used in the infinite dimensional setting, typically as a vector space of functions. For example, the set of continuous functions on closed interval of the real line with the norm of a function f given by

 ||f||=sup_(x in R)|f(x)|

(3)

is a Banach space, where sup denotes the supremum.

On the other hand, the set of continuous functions on the unit interval [0,1] with the norm of a function f given by

 ||f||=int_0^1|f(x)|dx

(4)

is not a Banach space because it is not complete. For instance, the Cauchy sequence of functions

 f_n={1   for x<=1/2; 1/2n+1-nx   for 1/2<x<=1/2+1/n; 0   for x>1/2+1/n

(5)

does not converge to a continuous function.

Hilbert spaces with their norm given by the inner product are examples of Banach spaces. While a Hilbert space is always a Banach space, the converse need not hold. Therefore, it is possible for a Banach space not to have a norm given by an inner product. For instance, the supremum norm cannot be given by an inner product.

Renteln and Dundes (2005) give the following (bad) mathematical joke about Banach spaces:

Q: What's yellow, linear, normed, and complete? A: A Bananach space.


REFERENCES:

Renteln, P. and Dundes, A. "Foolproof: A Sampling of Mathematical Folk Humor." Notices Amer. Math. Soc. 52, 24-34, 2005.

EN

تصفح الموقع بالشكل العمودي