

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Sheaf
المؤلف:
Godement, R.
المصدر:
Topologie Algébrique et Théorie des Faisceaux. Paris: Hermann, 1958.
الجزء والصفحة:
...
3-6-2021
2101
Sheaf
A sheaf is a presheaf with "something" added allowing us to define things locally. This task is forbidden for presheaves in general. Specifically, a presheaf
on a topological space
is a sheaf if it satisfies the following conditions:
1. if
is an open set, if {U_i}" src="https://mathworld.wolfram.com/images/equations/Sheaf/Inline4.gif" style="height:15px; width:24px" /> is an open covering of
and if
is an element such that
for all
, then
.
2. if
is an open set, if {U_i}" src="https://mathworld.wolfram.com/images/equations/Sheaf/Inline11.gif" style="height:15px; width:24px" /> is an open covering of
and if we have elements
for each
, with the property that for each,
,
, then there is an element
such that
for all
.
The first condition implies that
is unique.
For example, let
be a variety over a field
. If
denotes the ring of regular functions from
to
then with the usual restrictions
is a sheaf which is called the sheaf of regular functions on
.
In the same way, one can define the sheaf of continuous real-valued functions on any topological space, and also for differentiable functions.
REFERENCES:
Godement, R. Topologie Algébrique et Théorie des Faisceaux. Paris: Hermann, 1958.
Hartshorne, R. Algebraic Geometry. New York: Springer-Verlag, 1977.
Iyanaga, S. and Kawada, Y. (Eds.). "Sheaves." §377 in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1171-1174, 1980.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)