تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
FREQUENCY AND WAVELENGTH
المؤلف:
S. Gibilisco
المصدر:
Physics Demystified
الجزء والصفحة:
468
29-10-2020
1689
FREQUENCY AND WAVELENGTH
EM waves travel through space at the speed of light, which is approximately 2.99792 × 108 m/s (1.86262 × 105 mi/s). This is often rounded up to 3.00 × 108 m/s, expressed to three significant figures. The wavelength of an EM field in free space gets shorter as the frequency becomes higher. At 1 kHz, the wavelength is about 300 km. At 1 MHz, the wavelength is about 300 m. At 1 GHz, the wavelength is about 300 mm. At 1 THz, an EM signal has a wavelength of 0.3 mm—so small that you would need a magnifying glass to see it.
The frequency of an EM wave can get much higher than 1 THz; some of the most energetic known rays have wavelengths of 0.00001 Ångström (10-5 Å). The Ångström is equivalent to 10-10 m and is used by some scientists to denote extremely short EM wavelengths. A microscope of great magnifying power would be needed to see an object with a length of 1 Å. Another unit, increasingly preferred by scientists these days, is the nanometer (nm), where 1 nm = 10-9 m = 10 Å. The formula for wavelength λ, in meters, as a function of the frequency f, in hertz, for an EM field in free space is
λ = 2.99792 × 108/f
This same formula can be used for λ in millimeters and f in kilohertz, for λ in micrometers and f in megahertz, and for λ in nanometers and f in gigahertz. Remember your prefix multipliers: 1 millimeter (1 mm) is 10-3 m, 1 micrometer (1 μm) is 10-6 m, and 1 nanometer (1 nm) is 10-9 m. The formula for frequency f, in hertz, as a function of the wavelength λ, in meters, for an EM field in free space is given by transposing f and λ in the preceding formula:
f = 2.99792 × 108/λ
As in the preceding case, this formula will work for f in kilohertz and λ in millimeters, for f in megahertz and λ in micrometers, and for f in gigahertz and λ in nanometers.