1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التحليل : التحليل العقدي :

Analytic Function

المؤلف:  Knopp, K.

المصدر:  "Analytic Continuation and Complete Definition of Analytic Functions." Ch. 8 in Theory of Functions Parts I and II, Two Volumes Bound as One, Part I. New York: Dover

الجزء والصفحة:  ...

27-11-2018

545

Analytic Function

A complex function is said to be analytic on a region R if it is complex differentiable at every point in R. The terms holomorphic function, differentiable function, and complex differentiable function are sometimes used interchangeably with "analytic function" (Krantz 1999, p. 16). Many mathematicians prefer the term "holomorphic function" (or "holomorphic map") to "analytic function" (Krantz 1999, p. 16), while "analytic" appears to be in widespread use among physicists, engineers, and in some older texts (e.g., Morse and Feshbach 1953, pp. 356-374; Knopp 1996, pp. 83-111; Whittaker and Watson 1990, p. 83).

If a complex function is analytic on a region R, it is infinitely differentiable in R. A complex function may fail to be analytic at one or more points through the presence of singularities, or along lines or line segments through the presence of branch cuts.

A complex function that is analytic at all finite points of the complex plane is said to be entire. A single-valued function that is analytic in all but possibly a discrete subset of its domain, and at those singularities goes to infinity like a polynomial (i.e., these exceptional points must be poles and not essential singularities), is called a meromorphic function.


REFERENCES:

Knopp, K. "Analytic Continuation and Complete Definition of Analytic Functions." Ch. 8 in Theory of Functions Parts I and II, Two Volumes Bound as One, Part I. New York: Dover, pp. 83-111, 1996.

Krantz, S. G. "Alternative Terminology for Holomorphic Functions." §1.3.6 in Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 16, 1999.

Morse, P. M. and Feshbach, H. "Analytic Functions." §4.2 in Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 356-374, 1953.

Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.

EN

تصفح الموقع بالشكل العمودي