تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Contour Integration
المؤلف:
Arfken, G
المصدر:
Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press
الجزء والصفحة:
...
17-11-2018
1548
Contour integration is the process of calculating the values of a contour integral around a given contour in the complex plane. As a result of a truly amazing property of holomorphic functions, such integrals can be computed easily simply by summing the values of the complex residues inside the contour.
Let and
be polynomials of polynomial degree
and
with coefficients
, ...,
and
, ...,
. Take the contour in the upper half-plane, replace
by
, and write
. Then
![]() |
(1) |
Define a path which is straight along the real axis from
to
and make a circular half-arc to connect the two ends in the upper half of the complex plane. The residue theorem then gives
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
where denotes the complex residues. Solving,
![]() |
(5) |
Define
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
and set
![]() |
(10) |
then equation (9) becomes
![]() |
(11) |
Now,
![]() |
(12) |
for . That means that for
, or
,
, so
![]() |
(13) |
for . Apply Jordan's lemma with
. We must have
![]() |
(14) |
so we require .
Then
![]() |
(15) |
for and
. Since this must hold separately for real and imaginary parts, this result can be extended to
(16) |
(17) |
REFERENCES:
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 406-409, 1985.
Krantz, S. G. "Applications to the Calculation of Definite Integrals and Sums." §4.5 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 51-63, 1999.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 353-356, 1953.
Whittaker, E. T. and Watson, G. N. "The Evaluation of Certain Types of Integrals Taken Between the Limits and
," "Certain Infinite Integrals Involving Sines and Cosines," and "Jordan's Lemma." §6.22-6.222 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 113-117, 1990.