المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية
Untitled Document
أبحث في الأخبار
عمره عام واحد ويعاني من ورم خبيث بوزن (3) كغم وعلى نفقة العتبة الحسينية ... مستشفى خديجة الكبرى (ع) ينجح باستئصال ورم سرطان الكلى لطفل من محافظة الأنبار
2024-07-01
بالفيديو والصور: تضمن لوحات لمصممي قسم الإعلام استخدموا فيها تقنيات الذكاء الاصطناعي… افتتاح معرض النبأ العظيم بمشاركة (100) خطاط من داخل وخارج العراق
2024-07-01
الأولى من نوعها على مستوى العراق... هيئة التعليم التقني التابعة للعتبة الحسينية تعتزم استحداث إعدادية مهنية رائدة خاصة للبنات
2024-07-01
قسم الصيانة التابع للعتبة الحسينية ينجز تنصيب محطة لتحلية المياه في احدى المزارات الشيعية بمحافظة بابل
2024-07-01
جامعة وارث الأنبياء (ع) التابعة للعتبة الحسينية تعلن مواصلة العمل في بناية مشروع الورش الهندسية والمختبرات والقاعات الدراسية
2024-07-01
بالفيديو والصور: بحضور ممثل المرجعية العليا وبمشاركة (23) دولة.. العتبة الحسينية تطلق فعاليات مسابقة جائزة كربلاء الدولية الثالثة لتلاوة القرآن الكريم وحفظه
2024-06-30


Orbital curvatures


  

1387       03:50 مساءً       التاريخ: 5-2-2017              المصدر: Heino Falcke and Friedrich W Hehl

أقرأ أيضاً
التاريخ: 2023-05-30 810
التاريخ: 3-3-2016 1831
التاريخ: 2023-06-11 680
التاريخ: 2-3-2016 1547
التاريخ: 24-3-2022 2133
Orbital curvatures
For three sources S1, S2 and S8 we have detected a curvature in the orbits on the 1.5σ to 3σ level. In figure 1.1 we show the offset positions for S2 in declination and right ascension as a function of time. The linear fits to the first and second half of the data set clearly result in different slopes. Their difference divided by the time difference between the two intervals is a direct measure of the orbital curvature. In order to improve the statistics on an estimate of the accelerations we have used velocities derived from data covering different time intervals (Eckart et

Figure 1.1. The relative positions of S2 in declination and right ascension as a function of the observing epoch. The declination velocity plot has been shifted by +300 km s1.
al 2001, 2002). For S2 we find a curvature of 2.3 ± 0.9 mas yr2 corresponding to an acceleration of 95 km s1 yr1. For S1 and S8 we find a curvature of 3.8 ± 2.4 mas   yr2 and 3.3 ± 1.1 mas yr2, respectively. The slopes are in agreement with those expected from fits of Keplerian orbits to the data (for S2 see figures 1.1 and 1.2). As an example the SHARP data now start to constrain the possible orbits for S2. For S2 a likely solution (obtained from least-square fits of Keplerian orbits to the data) is that this star has a line-of-sight offset of 8–9 mpc and a line-of-sight velocity in the range of −200 to −600 km s1. Due to current uncertainties in the inclination a combination of −8 to −9 mpc and 200-600 km s1 is possible as well. Three possible orbits that represent good fits to the data are shown in figure 1.2. The current data and analysis indicate that S2 is aproaching its periastron.
The accelerations from the SHARP experiment (Eckart et al 2001, 2002) are consistent with recent results by Ghez et al (2000) and imply that the three stars orbit a central, compact mass (see figure 1.3).
Star S8 was excluded from the analysis, since the current proper motion velocity and radial separation from the center indicate that the measured acceleration requires orbital motion around a compact object with a mass in excess of 3 × 106 Mּ. The data suggest that either this star was or is subject to a close interaction with a different object or that its position measurements are influenced by the emission of a different cluster star. Therefore, the analysis of the enclosed mass is solely based on the available data for S1 and S2. For each of

Figure 1.2. Three inclined Keplerian orbits that have line of sight velocities and separations from Sgr A as mentioned in the text. The orbits represent the range of best fits to the 1992 to 2000 SHARP data for the fast moving source S2. From the proper motions alone we find a velocity of greater than 860 km s1 the results of the orbit modeling suggest a full space velocity of up to ∼1050 km s1.
the two sources S1 and S2 the acceleration values define an acceleration vector at an angle φ that should point towards the central source. Here we assume that the probability for the location of the central mass is uniform in φ. In figure 1.3 the stars S1 and S2 have been plotted at their time-averaged position resulting from the corresponding data sets. The measurement uncertainties define an error cone. For the presentation in figure 1.3 the dashed and dotted lines indicate an error cone that corresponds to a width of 2σ in deviation from the nominal direction indicated by the acceleration vector. In order to determine the location of the central mass we perform a maximum likelihood (ML) analysis. As an ML score we use log(ML) = −χ2S1/2−χ2S2/2. The thin contour lines in figure 8.6 indicate the locations at which log(ML) drops by 0.5 below the corresponding peak values. Here χ2 = (φ − φ0)2/(Δφ)2, φ0 denotes the angle of the acceleration vector, φ the angle of any radial line within an error cone, and Δφ = σ the half-width of the cone. The central filled circle in figure 1.3 marks the radio position of Sgr A* and corresponding uncertainties of ±30 mas. Using the observed curvature value and the enclosed mass range of 2.6-3.3 × 106 Mּ imposes a limit on the projected

Figure 1.3. The acceleration vectors of the sources S1, S2 as derived from the current SHARP data. An explanation of the symbols is given in the text. The motion of the stars is consistent with orbits around a central 3 × 106Mּ object.
distance of S1 and S2 from Sgr A*. For the SHARP/NTT data this leads to an improvement in the determination of the Sgr A* position. We account for this effect in figure 1.3 by multiplying the log(ML) scores of the error cones with a Gaussian prior of the appropriate 1/e width centered on the time-averaged positions of S1 and S2. From the projection of the 1σ contour line (thin contour line east of the center in figure 1.3) the multiplied probabilities derived from the SHARP/NTT and NIRC/Keck data result in a position of a central dark mass of 48+5424 mas E and  18+4261 mas S of the nominal radio position of Sgr A*. Within these limits the central mass is located at the 68.5% confidence level (Δχ = 1.0). At the 90% confidence level (Δχ = 2.71) the central mass is located in an interval given by 48+10948 mas E and 18+72133 mas S (thick contour line left of the center in figure 1.3). Figure 1.3 shows that at the current ±30 mas uncertainty of the radio position of Sgr A* the presently available accelerations of stars S1 and S2 alone are fully consistent with the hypothesis that the radio source Sgr A* is coincident with the center of the dark mass.


Untitled Document
زيد علي كريم الكفلي
لَا شَيْءَ يُعْجِبُنِي ....
علي الحسناوي
امتيازات الشهادة التي يحصل عليها الموظف اثناء الخدمة
طه رسول
كيمياء الشاي: سحر العلوم في كوبك!
منتظر جعفر الموسوي
النمو الاقتصادي وتعزيز البنى التحتية للدول
ياسين فؤاد الشريفي
اليرقات المضيئة، والمعروفة أيضًا باليرقات المتوهجة
علي الحسناوي
الدرجة المالية التي يستحقها حاملو شهادة الدبلوم...
حسن السعدي
مفاعل تشيرنوبل: كارثة غيرت مسار الطاقة النووية
ياسين فؤاد الشريفي
البطريق: الطائر الذي لا يطير ولكنه يسبح ببراعة:
د. فاضل حسن شريف
الشهادة الثالثة و مفردات من القرآن الكريم (أشهد أن) (ح 11)
الشيخ أحمد الساعدي
بك يا علي يعرف المؤمنون
د. فاضل حسن شريف
عبارات قرآنية مفرحة في العيد (ح 13) (فتبسم ضاحكا)
حسن الهاشمي
تطبيق حقيبة المؤمن يأخذك في رحلة إيمانية
د. فاضل حسن شريف
عبارات قرآنية مفرحة في العيد (ح 12) (الصفح الجميل)
د. فاضل حسن شريف
عبارات قرآنية مفرحة في العيد (ح 11) (ثمرات النخيل...