المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

المقترنات الجليسينية (Glycine Conjugates)
19-10-2021
How the junction works
5-5-2021
خصائصها صناعة مواد البناء والتشييد
7-5-2016
قالب الهرم المقلوب
8-5-2020
سبب الايات (1-5) من سورة الفيل
26-11-2014
حج الإفراد والقران
21-9-2016

Francesco Giacomo Tricomi  
  
86   01:49 مساءً   date: 20-8-2017
Author : F G Tricomi
Book or Source : La mia vita di matematico attraverso la cronistoria dei miei lavori (Bibliografia commentata 1916-1967)
Page and Part : ...


Read More
Date: 17-8-2017 33
Date: 20-8-2017 86
Date: 20-8-2017 128

Born: 5 May 1897 in Naples, Italy

Died: 21 November 1978 in Turin, Italy


Francesco Tricomi studied first at the University of Bologna, then at the University of Naples. His first academic appointment was to lecture at Padova, then he moved to the University of Rome.

The University of Florence offered Tricomi a chair of mathematics which he accepted but, after a few years, he moved again to take up the chair of mathematics at Torino. In fact before he moved to Torino he had already published a paper in 1923 which was to become very famous. In this paper he studied the theory of partial differential equations of mixed type, in particular the equation

yuxx + uyy = 0,

now known as the 'Tricomi equation'. The equation became important in describing an object moving at supersonic speed. Of course there were no supersonic aircraft in 1923 but the equation was to play a major role in later studies of supersonic flight.

Tricomi's time in Torino was affected by World War II and his work was interrupted for a time. Then, a few years after the end of the war, he was involved in the Bateman project. In 1946 Bateman died and Erdélyi headed a team, which included Magnus and Tricomi, working at the California Institute of Technology to publish the vast range of material left by Bateman. The team produced 3 volumes of Higher Transcendental Functions and 2 volumes of Tables of Integral Transforms. 

In 1950 Tricomi returned from the United States to Torino to continue his remarkable research output. Tricomi's autobiography [1] list 300 papers, while a further 46 are listed in [6]. These papers cover a vast range of subjects including singular integrals, differential and integral equations, pseudodifferential operators, functional transforms, special functions, probability theory and its applications to number theory.

As well as having the 'Tricomi equation' named after him, there are also special functions called 'Tricomi functions'.

Tricomi was an editor of Aequationes Mathematicae from the time the journal was founded until his death. The editors described him as:-

A forthright man, outspoken opponent of dictatorships of all colours, of sloppiness, of abstraction for abstraction's sake, and of the 'publish or perish' syndrome, his interests went far beyond mathematical research. Here we mention only his interest in the teaching of mathematics and in expository work, which led him to write several excellent textbooks, eventually translated from their original Italian to English, French, German and Russian.

The fine books refered to in this quotation were certainly vastly superior to that suggested by the modest comment Tricomi wrote in the preface of one of them:-

Maybe I have not succeeded to make difficult things easy, but at least I have never made an easy subject difficult.

Tricomi had a deep interest in problems concerning the history of mathematics and he published many important articles on this topic. In fact, references to articles on Riemann, Hadamard, Enriques and Fubini written by him appear in this Archive.

His influence on mathematics goes well beyond the impressive results of his research. His writings have made an important contribution towards the present development of science. As the editors of Aequationes Mathematicae write:-

... the problems ... which he has solved and the theories which he has initiated and others have continued to work on, will keep his name alive. His passing away is a great loss to the international mathematical community.


 

Books:

  1. F G Tricomi, La mia vita di matematico attraverso la cronistoria dei miei lavori (Bibliografia commentata 1916-1967) (Padova, 1967).

Articles:

  1. G C Dong and M Y Chi, Influence of Tricomi's mathematical work in China, in Mixed type equations (Leipzig, 1986),
  2. G Fikera, Francesco Giacomo Tricomi (on the ninetieth annversary of his birth) (Russian), Uspekhi Mat. Nauk 42 (3)(255) (1987), 203-211.
  3. G Fichera, Francesco Giacomo Tricomi, in Mathematical analysis (Leipzig, 1985), 6-31.
  4. G Fichera, Francesco Giacomo Tricomi (Italian), Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 114 (1-2) (1980/81), 37-48.
  5. G Fichera, Francesco Giacomo Tricomi (Italian), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 66 (5) (1979), 467-483.
  6. S G Mikhlin, On Tricomi's works on integral equations, in Mixed type equations (Leipzig, 1986), 195-204.
  7. U Richard, Francesco Giacomo Tricomi (Italian), Boll. Un. Mat. Ital. A (6) 1 (1) (1982), 159-170.
  8. F G Tricomi, Principles and maxims from a notebook of Francesco G Tricomi (1897-1978) (Italian), Archimede 31 (1-2) (1979), 15-16.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.