المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

أنواع التشبيه
5-11-2014
النص على امامة الامام الرضا(عليه السلام)
19-05-2015
خزف الزجاج Glass - ceramic
4-9-2016
دجاج اللحم (التسمين)
7-5-2022
q-Exponential Function
27-8-2019
Polycomb Proteins
3-9-2019

Alexander Barrie Grieve  
  
81   06:18 مساءً   date: 5-6-2017
Author : Biographical Index of Staff and Alumni (University of Edinburgh)
Book or Source : Biographical Index of Staff and Alumni (University of Edinburgh)
Page and Part : ...


Read More
Date: 13-6-2017 24
Date: 9-6-2017 155
Date: 6-6-2017 119

Born: 1 January 1886 in Aberfeldy, Scotland

Died: 3 October 1952 in Stonehouse, Lanark, Scotland


Alexander Barrie Grieve was known as A Barrie Grieve or Barry Grieve. His father, Alexander Grieve (born in Tranent, East Lothian in 1857; died in 1933), was Headmaster of Breadalbane Academy, Aberfeldy from 1885. His mother was Martha Margaret Clark (born in Dalbeattie, Kirkcudbrightshire in 1856; died in 1932). Barrie Grieve had three siblings: Janet (1889-1970), David (1890-1917) and Ian (1897-1972). Barrie was educated at Breadalbane Academy and passed English, Mathematics, Latin, Greek, and French at the Higher grade in the Leaving Certificate examinations. In 1903, he was awarded a MacDougall Bursary of £25 to attend Edinburgh University.

Grieve first matriculated at Edinburgh University in October 1903. During his first year of study he took Latin and Greek at Ordinary level, then in the following session, 1904-05, he studied Mathematics, Natural Philosophy, and Chemistry at Ordinary level. He began his Honours studies in 1905-06 but also took Logic at Ordinary level in that year. Over the next few years he took Honours courses in Mathematics, Dynamics, Thermodynamics, Electrostatics, Constitution of matter, Electricity, and Function Theory. He was awarded an M.A. with First Class Honours in Mathematics and Natural Philosophy from Edinburgh University in April 1908.

Grieve then undertook research in geometry. For example he wrote: A B Grieve, Some Points in the Geometry of Cubic Surfaces, Proc. London Math. Soc. (1913), 315-339. He was awarded a D.Sc. for this research and joined the Edinburgh Mathematical Society in November 1923. In 1924 he became H.M. Inspector of Schools and lived in Orchardhead Road, Liberton, Edinburgh. In 1925 he published a book of 314 pages with title Analytical Geometry of Conic Sections and Elementary Solid Figures. A review of the book, written shortly after its publication, states:-

This book claims to contain the substance of the plane and solid analytical geometry (except straight line and circle) required for Pass and Engineering students at Universities, and for the more advanced pupils of Secondary Schools. It is refreshing to find plane and solid geometry in one volume, but the plan possesses the inherent objection that not very much ground in either can be covered in one book. Furthermore, "any portions of the subject which are difficult or of algebraic interest only" have been avoided. The book therefore consists in the main of what may be called numerical analytical geometry of the conics and conicoids. There are also chapters on the General Conic, Poles and Polars, Confocal Conics and Conicoids, and a final chapter on Curvature; but the great method of abridged notation, which is the very essence of the subject, is only hinted at in one chapter. The book is thus very limited in its outlook, and professes to be so.

An elementary knowledge of Calculus is assumed; but alternative methods are given, usually in the examples at the end of a chapter. No mention is made, however, of Burnside's beautiful method for writing down secants. Perhaps the author regards this as artificial and "difficult". In any case it might have found a place among the examples, which on the whole are a very good collection. There is a short historical note at the beginning, and an admirable plate showing photographs of models of conicoids. The book is beautifully printed and the diagrams are clear.

Barrie Grieve joined the navy during the First World War and fought in the Battle of Jutland. His brother Ian (who was a GP in London and was instrumental in first diagnosing asbestosis) served with the 1/14th London Battalion (London Scottish) and was wounded in the eye, and discharged. His brother David was killed on 9 April 1917 at the Battle of Vimy Ridge in France.

Barrie Grieve married Isabella Watson (born 1891) at St George's Church, Dumfries, Scotland on 14 April 1914. Isabella died at 16 Orchardhead Road, Liberton, Edinburgh on 1 December 1930 and Grieve married Eliza McPherson on 16 July 1932 at Duke of Gordon Hotel, Kingussie, Inverness.

Alexander Grieve, Barrie Grieve's father, retired in 1922 and died on 1 April 1933. Barrie Grieve's mother died in 1932. At the time of his father's death A Barrie Grieve was living at Elmbank, Strathpeffer, Ross-shire and was working there as H.M. Inspector of Schools having only shortly moved there from Edinburgh. Barrie Grieve and his brother Ian were pall-bearers at their father's funeral on 4 April 1933.

On 1 July 1933 The Scotsman reported that Barrie Grieve, H.M. Inspector of Schools, and former pupil of Breadalbane Academy, Aberfeldy addressed the pupils while his wife presented the prizes.


 

  1. Biographical Index of Staff and Alumni (University of Edinburgh).
  2. Graduates in Arts, 1884-1925 (University of Edinburgh).
  3. Graduates in Arts (University of Edinburgh).

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.