المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

صلة الوصية الواجبة بالوصية الاختيارية
26-9-2018
السؤال عن حب علي يوم القيامة
26-01-2015
التخمرات المزدوجة Dual Fermentations
16-2-2018
سعيد بن فيروز أبو البختري
18-10-2017
يوم العاشر من المحرم
8-04-2015
غني وفقير في مجلس رسول الله
29-9-2021

The Distribution Function and the Fermi Energy  
  
4351   10:11 صباحاً   date: 17-5-2017
Author : Donald A. Neamen
Book or Source : Semiconductor Physics and Devices
Page and Part : p 91


Read More
Date: 26-11-2020 1677
Date: 14-3-2021 2024
Date: 9-3-2021 2453

The Distribution Function and the Fermi Energy

To begin to understand the meaning of the distribution function and the Fermi energy, we can plot the distribution function versus energy. Initially, let T = 0 K and consider the case when E < EF. The exponential term in Equation (1) becomes exp[(E - EF)/kT] → exp (-∞) = 0. The resulting distribution function is fF(E < EF) = 1 . Again let T = 0 K and consider the case when E > EF. The exponential term in the distribution function becomes exp[(E - EF)/kT] → exp (+∞) → + ∞. The resulting Fermi-Dirac distribution function now becomes fF(E > EF) = 0.

(1)

The Fermi-Dirac distribution function for T = 0 K is plotted in Figure 1.1. This result shows that, for T = 0 K, the electrons are in their lowest possible energy states. The probability of a quantum state being occupied is unity for E < EF and the probability of a state being occupied is zero for E > EF. All electrons have energies below the Fermi energy at T = 0 K.

Figure 1.2 shows discrete energy levels of a particular system as well as the number of available quantum states at each energy. If we assume, for this case, that

Figure 1.1 The Fermi probability function versus energy for T = 0 K.

Figure 1.2 Discrete energy states and quantum states for a particular system at T = 0 K.

the system contains 13 electrons, then Figure 1.2 shows how these electrons are distributed among the various quantum states at T = 0 K. The electrons will be in the lowest possible energy state, so the probability of a quantum state being occupied in energy levels E1 through E4 is unity, and the probability of a quantum state being occupied in energy level E5 is zero. The Fermi energy, for this case, must be above E4 but less than E5. The Fermi energy determines the statistical distribution of electrons and does not have to correspond to an allowed energy level.

Now consider a case in which the density of quantum states g(E) is a continuous function of energy as shown in Figure 1.3. If we have N0 electrons in this system, then the distribution of these electrons among the quantum states at T = 0 K is shown by the dashed line. The electrons are in the lowest possible energy state so that all states below EF are tilled and all states above EF are empty. If g(E) and N0 are known for this particular system, then the Fermi energy EF can be determined.

Consider the situation when the temperature increases above T = 0 K. Electrons gain a certain amount of thermal energy so that some electrons can jump to higher energy levels, which means that the distribution of electrons among the available energy states will change. Figure 1.4 shows the same discrete energy levels. The distribution of electrons among the quantum states has changed from the T = 0 K case. Two electrons from the E4 level have gained enough energy to jump to E5, and one electron from E3 has jumped to E4. As the temperature changes, the distribution of electrons versus energy changes.

The change in the electron distribution among energy levels for T > 0 K can be seen by plotting the Fermi-Dirac distribution function. If we let E = EF and T > 0 K, then Equation (1) becomes

The probability of a state being occupied at E = EF is 1/2. Figure 1.5 shows the Fermi-Dirac distribution function plotted for several temperatures, assuming the Fermi energy is independent of temperature.

Figure 1.3 Density of quantum states and electrons in a continuous energy system at T = 0 K.

Figure 1.4 Discrete energy states and quantum states for the same system shown in Figure 1.2 for T > 0 K.

Figure 1.5 The Fermi probability function versus energy for different temperatures.

We can see that for temperatures above absolute zero, there is a nonzero probability that some energy states above EF will be occupied by electrons and some energy states below EF will be empty. This result again means that some electrons have jumped to higher energy levels with increasing thermal energy.

We can see from Figure 1.5 that the probability of an energy above EF being occupied increases as the temperature increases and the probability of a state below EF being empty increases as the temperature increases.

We may note that the probability of a state a distance dE above EF being occupied is the same as the probability of a state a distance dE below EF empty. The function fF (E) is symmetrical with the function 1 – fF (E) about the Fermi energy, EF. This symmetry effect is shown in Figure 1.6 and will be us in the next chapter.

Figure 1.6 The probability of a slate being occupied. fF(E), and the probability of a state being empty, 1 - fF(E).

Figure 1.7 The Fermi-Dirac probability function and the Maxwell-Boltzmann approximation.

Consider the case when E - EF >> kT. where the exponential term in the denominator of Equation (1) is much greater than unity. We may neglect the 1 in the denominator, so the Femi-Dirac distribution function becomes

(2)

Equation (2) is known as the Maxwell-Boltzmann approximation, or simply the Boltzmann approximation. to the Fermi-Dirac distribution function. Figure 1.7 shows the Femi-Dirac probability function and the Boltzmann approximation. This figure gives an indication of the range of energies over which the approximation is valid.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.