المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

الصور الخطية (الرسوم اليدوية)
6/10/2022
انواع السفن الحالية
2024-06-23
معجزة قرآنية
12-7-2016
الاهتمام بتهذيب نفس الأولاد
2023-03-28
البحث عن تفسير السيد الطباطبائي جدير بالعناية
18-11-2020
حدُّ الزنا
6-12-2015

THE ALGEBRA OF SETS-Properties of set inclusion  
  
887   02:13 مساءً   date: 12-1-2017
Author : J. ELDON WHITESITT
Book or Source : BOOLEAN ALGEBRA AND ITS APPLICATIONS
Page and Part : 11-14

In Section of Element and set, the notation A⊆B was defined to mean that set A is contained within set B. When we wish to refer to the symbol ⊆without specific reference to any sets, we call it set inclusion just as (+) is referred to as union. The laws in Section (Fundamental laws.)refer only to intersection, union, and complementation. Set inclusion also satisfies some basic laws which are interesting and useful. These laws can be verified directly from the definition or by making use of Venn diagrams.

Still another approach is to make use of the fact pointed out in Section (The combination of sets.)  that X ⊆ Y if and only if XY' = 0. The proofs given here are based onthe definition of c.

THEOREM 1. If X ⊆Y and Y ⊆ Z, then X ⊆ Z. (This is known as the transitive property of inclusion.)

Proof. Let x be an arbitrary element of X. Then since X ⊆Y we have,  by definition, x ∈ Y. Similarly, from Y ⊆Z it follows that x ∈ Z. But x was an arbitrary element of X and hence X ⊆ Z.

THEOREM 2. If X ⊆Y and X c Z, then X ⊆ YZ.

Proof. Let x be an arbitrary element of X. Then from X ⊆Y it follows that x ∈ Y, and from X ⊆ Z, it follows that x ∈Z. Together, these statements imply that x ∈YZ by the definition of intersection, and hence X⊆YZ.

THEOREM 3. If X ⊆ Y, then X⊆Y + Z for any set Z.

Proof. Since Y ⊆ Y + Z by the definition of union, this theorem follows at once from Theorem 1.

THEOREM 4. X c Y if and only if Y' ⊆ X'.

Proof. First, assume that X ⊆Y and let y' be an arbitrary element in Y.

Then y' is not an element in Y, by definition of complement. But every element in X is an element in Y and hence y' is not an element in X.

Hence y' must be an element in X'. Since y' represented any element of Y', it follows that Y' ⊆X'.

Next, assume that Y' ⊆ X. Then by the first part of this proof,  (X')' ⊆(Y')' which reduces to X ⊆Y, by the law of double complementation. This completes the proof of the theorem.

These theorems, which were easy to prove, have some rather interesting applications, one of which is to problems of a logical nature. although we are not primarily interested in logic in this chapter, the algebra of logic and the algebra of sets are very closely related. For instance, one of the basic laws of logic is the law of syllogism, which is equivalent to Theorem 1.

A classic example of the use of this law is the following.

EXAMPLE 1. Given that Socrates is a man, and that all men are mortal, it is required to show that Socrates is mortal. Although this type of argument is so familiar that any proof may seem absurd, the necessary steps in a formal proof using Theorem 1 are given to illustrate the general method.

Solution. Let the universal set be the set of all animate things; let X denote the set of all men, Y the set of all mortal things, and S the unit set consisting of Socrates alone. We are given that S ⊆X and X ⊆F. By Theorem 1 it follows that S⊆Y, which is the desired conclusion that Socrates is mortal.

The principle involved in the law of syllogism is familiar to everyone.

Problems of similar type referring to Theorem 2, 3, or 4 are not quite so

familiar. The following example and some of the problems in the exercises

use several of these theorems in combination. These problems are artificial,

but they illustrate the way in which the algebra of sets can help in inter-

preting complicated sets of statements. The use of symbolic notation

makes trivial the forming of logical conclusions that would be difficult

otherwise.

EXAMPLE 2. What conclusion can be drawn from the following statements?

(a) A man who is unhappy is not his own boss.

(b) All married men have responsibilities.

(c) Every man is either married, or is his own boss (or both).

(d) No man with responsibilities can fish every day.

Solution. Let the universal set be the set of all men, and denote other sets as follows:

                  H is the set of happy men,

                  B is the set of men who are their own bosses,

                  M is the set of married men,

                 R is the set of men with responsibilities,

                 F is the set of men who fish every day.

Statement (a) translates immediately into H' ⊆ B', but by applying Theorem 4 we may also write the statement in symbols as follows:

(a) B ⊆ H.

Statement (b) tells us that M ⊆ R or, equally well, by Theorem 4 we have

(b) R' ⊆M'.

Statement (c) gives that M+ B = 1, or referring to the equivalence of this statement with a condition of inclusion, we obtain

(c) M'⊆B.

Finally, from (d) we obtain the fact that RF = 0, which is equivalent to

(d) F ⊆R'.

Combining (d) and (b) by Theorem 1 we obtain (e) F ⊆ M'. Again applying Theorem 1 to (e) and (c), we obtain (f) F ⊆ B. Finally, combining (f) and (a),  we have (g) F ⊆H. We will consider (g) as the major conclusion, which reads "All men who fish every day are happy." Note that each of (e) and (f) is also a conclusion that we obtained from the given statements.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.