المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

انتاج الإيثانول
4-6-2018
اقسام العصور الحجرية القديمة في مصر
الحذر من العجب بالنفس
25-7-2016
تناظر هدروليكي hydraulic analogy
12-3-2020
الطابع الغنائي في النقد الأموي
14-08-2015
اللون الأبيض ودلالته
2024-06-04

SWITCHING ALGEBRA-Introduction  
  
955   01:07 مساءاً   date: 5-1-2017
Author : J. ELDON WHITESITT
Book or Source : BOOLEAN ALGEBRA AND ITS APPLICATIONS
Page and Part : 75

In this part, we will introduce a third important application of Boolean algebra, the algebra of circuits, involving two-state  (bistable) devices. The simplest example of such a device is a switch or contact. The theory introduced holds equally well for such two-state devices as rectifying diodes, magnetic cores, transistors, various types of electron tubes, etc. The nature of the two states varies with the device and includes conducting versus nonconducting, closed versus open, charged versus discharged, magnetized versus nonmagnetized, high-potential versus low-potential, and others.

The algebra of circuits is receiving more attention at present, both from mathematicians and from engineers, than either of the two applications of Boolean algebra which we considered in the previous chapters. The importance of the subject is reflected in the use of Boolean algebra in the design and simplification of complex circuits involved in electronic computers, dial telephone switching systems, and many varied kinds of electronic control devices.

The algebra of circuits fits into the general picture of Boolean algebra as an algebra with two elements 0 and 1. This means that except for the terminology and meaning connecting it with circuits, it is identical with the algebra of propositions considered as an abstract system. Either of these Boolean algebras is much more restricted than an algebra of sets.  The latter concept is so general, in fact, that every Boolean algebra may be interpreted as an algebra of sets.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.