المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر
{ان أولى الناس بإبراهيم للذين اتبعوه}
2024-10-31
{ما كان إبراهيم يهوديا ولا نصرانيا}
2024-10-31
أكان إبراهيم يهوديا او نصرانيا
2024-10-31
{ قل يا اهل الكتاب تعالوا الى كلمة سواء بيننا وبينكم الا نعبد الا الله}
2024-10-31
المباهلة
2024-10-31
التضاريس في الوطن العربي
2024-10-31

خواص وتركيب عسل المردقوش
9-6-2016
باب النداء
2023-04-29
المنظمات التي تحتاج لإعادة هندسة العمليات الإدارية
6-6-2016
خنفساء الحبوب المنشارية Oryzaephilus surinemensis
2024-01-25
Vowels: Lexical distribution
2024-03-29
تعيين التشكيل: في حالة وجود أكثر من مركز كيرالي
11-12-2016


الأرقام المعنوية في الحسابات  
  
929   02:57 مساءاً   التاريخ: 5-7-2016
المؤلف : فريدريك بوش ، دافيد جيرد
الكتاب أو المصدر : اساسيات الفيزياء
الجزء والصفحة : ص 7
القسم : علم الفيزياء / الفيزياء والعلوم الأخرى / الفيزياء الرياضية /


أقرأ أيضاً
التاريخ: 2024-03-10 658
التاريخ: 5-7-2016 930
التاريخ: 1-1-2017 677
التاريخ: 2023-09-19 880

الأرقام المعنوية في الحسابات

حيث ان لكل أجهزة القياس حد ضباطية معين , ونظراً لأن الأخطاء الإحصائية غالباً ما تتواجد ، فإن هناك حداً معيناً الأرقام المعروفة يقينا في نتيجة كل قياس .

وتسمى الأرقام المعروفة يقيناً بالأرقام المعنوية. ومن ثم فعند قيامك بحل مسألة فيزيائية معينة يجب عليك أن تستخدم العدد الصحيح من الأرقام المعنوية للتعبير عن نتائج قياسك وحسابك على حد سواء.

والأصفار قد تكون أولاً تكون أرقاماً معنوية ، ويتوقف ذلك على ما إذا تمثل قيماً معروفة أو أنها  قد استخدمت لتحديد موضع العلامة العشرية. ولكن يمكن تلافي الغموض فيما يتعلق بالأصفار باستخدام التدوين العلمي ، أي باستخدام العامل الأسي لبيان موضع العلامة العشرية وكتابة العدد الذي يحتوي على الأرقام المعنوية قبل العامل الأسي.

أمثلة :

من الضروري عند إجراء الحسابات معرفة عدد الأرقام المعنوية اللازم الاحتفاظ بها في النتيجة. ذلك أن الآلات الحاسبة تعطي النتيجة على هيئة عدد مكون مما يقرب من عشرة أرقام حتى وإن كانت الكميات المدخلة مكونة من عددية معنويين أو ثلاثة فقط. وسوف نتعرف خلال هذا المقرر على قاعدتين بسيطتين لحل هذه المشكلة.

الارقام المعنوية في عمليتي الجمع او الطرح

عند جمع او طرح الكميات المناسبة يمكن ان تكون ضباطية النتيجة مساوية فقط لأقل حدود الضباطية في المجموع او الفرق. وفي هذه الحالة تكون كل الارقام وحتى حد الضباطية هذا ارقاما معنوية جميعها.

 الأرقام المعنوية في عمليتي الضرب والقسمة

عند ضرب أو طرح الكميات المقاسة يمكن أن يكون عدد الأرقام المعنوية في النتيجة مساوياً فقط لأقل عدد من الأرقام المعنوية في أي عامل في المسألة .

مثال توضيحي:

لنفرض أنك قد أجريت ثلاثة قياسات للطول باستخدام أجهزة ذات ضباطات مختلفة وأنك حصلت على 3.76 cm ،  46.855 ، 0.2 cm . ما مجموع هذا القيم؟

استدلال منطقي :

الحساب :

الآلة الحاسبة تعطي :

ولكن قاعدة الأرقام المعنوية في الجمع والطرح تفيدنا أن النتيجة يجب ان تعطي لأقرب0.1 cm  فقط وذلك لأن أقل الكميات ضباطية (0.2) معرفة حتى هذه الضباطية فقط . الإجابة الصحيحة إذن هي50.8 cm.

ولكن نرى ان هذا صحيح بالفعل , لننظر إلى معنى ضباطية كل من الأعداد السابقة. بتطبيق قاعدة ½± سنجد ان القيمة الأولى تقع في المدى من 3.755  إلى  3.765. كذلك فإن القيمة الثانية يمكن ان تكون 46.8555 وهي أكبر قيمة أو 46.8545 وهي أصغر قيمة , أما القيمة الثالثة فتقع في المدى من  0.15  إلى 0.25. ولإيجاد درجة عدم اليقين في المجموع يمكن إيجاد أكبر مجموع باستخدام القيم العليا للأعداد الثلاثة ثم حساب أصغر مجموع باستخدام القيم الصغرى لها :

أكبر مجموع :                        أصغر مجموع:

                        

ومع ذلك نجد أن مدى اليقين أكبر قليلاً من0.1 cm. هذا المثال التوضيحي يبين أنه حتى الرقم المعنوي الثالث موضع شك ، ومن ثم ليس هناك أي مبرر لادعاء أن الضباطية أعلى من 50.8 cm.

مثال توضيحي:

ما حجم صندوق قيست أطوال أضلاعه فوجد أنها31.3 cm  , 28 cm  ،51.85 cm ؟

استدلال منطقي :

تذكر أولاً أن حجم الصندوق يمكن إيجاده ضرب طوله في عرضه في ارتفاعه. وباستخدام الآلة الحاسبة نجد أن:

 313 cm)(28 cm)(51.85 cm) = 45.441.34 cm)-الحجم

ولكن قاعدة الأرقام المعنوية تحتم الاحتفاظ برقمين معنويين فقط ( لأننا محددون برقمين معنويين في القيمة28 cm ) :

45.000 cm3 = 4.5 × 104cm-(الحجم)

يبدو أننا قسونا على أنفسنا قسوة شديدة بإهمال جميع الأرقام المعنوية الأخرى. لكن بالنظر إلى معنى الضباطية سنرى أن أكبر قيم للأعداد الثلاثة ، باستعمال معنى الضباطية , هي 31.35 ، 28.5 ، 51.855 . وبذلك سنجد ان القيمة العظمى للحجم هي :

313​cm)(28.5 cm)(51.855 cm) = 46.300 cm3) = القيمة العظمى للحجم.

ويمكن إيجاد القيمة الصغرى للحجم باستخدام القيم الصغرى للأعداد المعطاة :

31.25cm)(27.5 cm)(51.845 cm) = 44.600 cm3) = القيمة الصغرى للحجم.

تبين القياسات إذن أن الحجم المحسوب يجب ان يكون في هذا المدى. وهكذا نرى أن الرقم الثاني نفسه غير يقيني ، ومن ثم فإن الحجم يكون 45.000 cm3  تقريباً . وهو يتكون من رقمين معنويين فقط .

تلخيصاً لما سبق من المهم أن نتذكر الآتي :

الحسابات لا يمكنها زيادة ضباطية الكميات المقاسة أو عدد أرقامها المعنوية.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.