المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الكيمياء
عدد المواضيع في هذا القسم 11123 موضوعاً
علم الكيمياء
الكيمياء التحليلية
الكيمياء الحياتية
الكيمياء العضوية
الكيمياء الفيزيائية
الكيمياء اللاعضوية
مواضيع اخرى في الكيمياء
الكيمياء الصناعية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

مكانة الإمام الباقر العلمية ومنها التفسير
27-02-2015
طرائق امتصاص الاشعة الكهرومغناطيسية
2024-04-17
Stress
2024-04-29
The STRUT vowel
23-6-2022
المعرفة وأقسامها
15-8-2020
Comparison of vowels across dialects
22-6-2022

Describing a Reaction: Equilibria, Rates, and Energy Changes  
  
3640   05:46 مساءاً   date: 28-6-2016
Author : John McMurry
Book or Source : Organic Chemistry
Page and Part : 9th - p165

Describing a Reaction: Equilibria, Rates, and Energy Changes

Every chemical reaction can go in either a forward or reverse direction. Reactants can go forward to products, and products can revert to reactants. As you may remember from your general chemistry course, the position of the resulting chemical equilibrium is expressed by an equation in which Keq, the equilibrium constant, is equal to the product concentrations multiplied together, divided by the reactant concentrations multiplied together, with each concentration raised to the power of its coefficient in the balanced equation. For the generalized reaction we have.

The value of the equilibrium constant tells which side of the reaction arrow is energetically favored. If Keq is much larger than 1, then the product concentration term [C]c[D]d is much larger than the reactant concentration term [A]a[B]b, and the reaction proceeds as written from left to right. If Keq is near 1, appreciable amounts of both reactant and product are present at equilibrium. And if Keq is much smaller than 1, the reaction does not take place as written but instead goes in the reverse direction, from right to left.

  In the reaction of ethylene with HBr, for example, we can write the following equilibrium expression and determine experimentally that the equilibrium constant at room temperature is approximately 7.1 X 107:

   Because Keq is relatively large, the reaction proceeds as written and more than 99.999 99% of the ethylene is converted into bromoethane. For practical purposes, an equilibrium constant greater than about 103 means that the amount of reactant left over will be barely detectable (less than 0.1%).

   What determines the magnitude of the equilibrium constant? For a reaction to have a favorable equilibrium constant and proceed as written, the energy of the products must be lower than the energy of the reactants. In other words, energy must be released. This situation is analogous to that of a rock poised precariously in a high-energy position near the top of a hill. When it rolls downhill, the rock releases energy until it reaches a more stable, lowenergy position at the bottom.

   The energy change that occurs during a chemical reaction is called the

Gibbs free-energy change (ΔG), which is equal to the free energy of the products minus the free energy of the reactants: ΔG = Gproducts - Greactants.

  For a favorable reaction, ΔG has a negative value, meaning that energy is lost by the chemical system and released to the surroundings, usually as heat. Such reactions are said to be exergonic. For an unfavorable reaction, DG has a positive value, meaning that energy is absorbed by the chemical system from the surroundings.

   Such reactions are said to be endergonic. You might also recall from general chemistry that the standard free-energy change for a reaction is denoted as ΔG°, where the superscript ° means that the reaction is carried out under standard conditions, with pure substances in their most stable form at 1 atm pressure and a specified temperature, usually 298 K. For biological reactions, the standard free-energy change is denoted as ΔG° and refers to a reaction carried out at pH = 7.0 with solute concentrations of 1.0 M.

  Because the equilibrium constant, Keq, and the standard free-energy change, ΔG°, both measure whether a reaction is favorable, they are mathematically related by the equation

    The enthalpy change (ΔH), also called the heat of reaction, is a measure of the change in total bonding energy during a reaction. If ΔH is negative, as in the reaction of HBr with ethylene, the products have less energy than the reactants. Thus, the products are more stable and have stronger bonds than the reactants, heat is released, and the reaction is said to be exothermic. If ΔH is positive, the products are less stable and have weaker bonds than the reactants, heat is absorbed, and the reaction is said to be endothermic. For example, if a reaction breaks reactant bonds with a total strength of 380 kJ/mol and forms product bonds with a total strength of 400 kJ/mol, then ΔH for the reaction is 220 kJ/mol and the reaction is exothermic.

   The entropy change (ΔS) is a measure of the change in the amount of molecular randomness, or freedom of motion, that accompanies a reaction. For example, in an elimination reaction of the type

there is more freedom of movement and molecular randomness in the products than in the reactant because one molecule has split into two. Thus, there is a net increase in entropy during the reaction and DS has a positive value. On the other hand, for an addition reaction of the type

the opposite is true. Because such reactions restrict the freedom of movement of two molecules by joining them together, the product has less randomness than the reactants and DS has a negative value. The reaction of ethylene and HBr to yield bromoethane, which has DS° 5 20.132 kJ/(K.mol), is an example.

Table 1-1 describes the thermodynamic terms more fully. Knowing the value of Keq for a reaction is useful, but it’s important to realize its limitations. An equilibrium constant tells only the position of the equilibrium, or how much product is theoretically possible. It doesn’t tell the rate of reaction, or how fast the equilibrium is established. Some reactions are extremely slow even though they have favorable equilibrium constants. Gasoline is stable at room temperature, for instance, because the rate of its reaction with oxygen is slow at 298 K. Only at higher temperatures, such as contact

Table 1-1 Explanation of Thermodynamic Quantities: ΔGοHο -TΔSο

with a lighted match, does gasoline react rapidly with oxygen and undergo complete conversion to the equilibrium products water and carbon dioxide.  Rates (how fast a reaction occurs) and equilibria (how much a reaction occurs) are entirely different.




هي أحد فروع علم الكيمياء. ويدرس بنية وخواص وتفاعلات المركبات والمواد العضوية، أي المواد التي تحتوي على عناصر الكربون والهيدروجين والاوكسجين والنتروجين واحيانا الكبريت (كل ما يحتويه تركيب جسم الكائن الحي مثلا البروتين يحوي تلك العناصر). وكذلك دراسة البنية تتضمن استخدام المطيافية (مثل رنين مغناطيسي نووي) ومطيافية الكتلة والطرق الفيزيائية والكيميائية الأخرى لتحديد التركيب الكيميائي والصيغة الكيميائية للمركبات العضوية. إلى عناصر أخرى و تشمل:- كيمياء عضوية فلزية و كيمياء عضوية لا فلزية.


إن هذا العلم متشعب و متفرع و له علاقة بعلوم أخرى كثيرة ويعرف بكيمياء الكائنات الحية على اختلاف أنواعها عن طريق دراسة المكونات الخلوية لهذه الكائنات من حيث التراكيب الكيميائية لهذه المكونات ومناطق تواجدها ووظائفها الحيوية فضلا عن دراسة التفاعلات الحيوية المختلفة التي تحدث داخل هذه الخلايا الحية من حيث البناء والتخليق، أو من حيث الهدم وإنتاج الطاقة .


علم يقوم على دراسة خواص وبناء مختلف المواد والجسيمات التي تتكون منها هذه المواد وذلك تبعا لتركيبها وبنائها الكيميائيين وللظروف التي توجد فيها وعلى دراسة التفاعلات الكيميائية والاشكال الأخرى من التأثير المتبادل بين المواد تبعا لتركيبها الكيميائي وبنائها ، وللظروف الفيزيائية التي تحدث فيها هذه التفاعلات. يعود نشوء الكيمياء الفيزيائية إلى منتصف القرن الثامن عشر . فقد أدت المعلومات التي تجمعت حتى تلك الفترة في فرعي الفيزياء والكيمياء إلى فصل الكيمياء الفيزيائية كمادة علمية مستقلة ، كما ساعدت على تطورها فيما بعد .