المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الكيمياء
عدد المواضيع في هذا القسم 11123 موضوعاً
علم الكيمياء
الكيمياء التحليلية
الكيمياء الحياتية
الكيمياء العضوية
الكيمياء الفيزيائية
الكيمياء اللاعضوية
مواضيع اخرى في الكيمياء
الكيمياء الصناعية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

أنواع البحوث العلمية
7-2-2018
mu-Operator
2-1-2022
القيمة الوظيفية للكلوريد
6-2-2021
عدم وجوب القيام في النافلة
2-12-2015
المشايخ الثقات.
2024-01-28
منافع سورة إبراهيم
2023-08-23

Oxo-biodegradable polymers  
  
781   02:10 مساءاً   date: 9-6-2016
Author : Faris Yılmaz
Book or Source : POLYMER SCIENCE
Page and Part : p26


Read More
Date: 26-1-2020 561
Date: 29-9-2017 584
Date: 20-9-2017 703

Oxo-biodegradable polymers

   Oxo-biodegradable polymers are the polymer materials that present in their formulation pro-oxidant and antioxidant additives, so as to provide a planned period of useful life, after which the materials begin to degrade oxidatively, the residues being inherently biodegradable. It is also possible that the polymer contains pro-oxidant chemical structures, such as double bonds and atoms susceptible to attack by free radicals. The oxidation process is called peroxidation, and occurs through a free radical mechanism. The first step is the formation of a free radical in the polymer (i. e., a macrorradical), through the homolytic cleavage of a CH or a CC bond, that could take place because of the heat, the UV radiation or the mechanical stress (e. g., shear or elongation during the processing of the material, or the wind or ocean waves action). Then the polymer radical formed may capture an oxygen molecule, generating a peroxide radical, which after capturing a hydrogen atom bound to the polymer will form a hydroperoxide bond. The hydroperoxide decomposes over time, generating an alkoxy and a hydroxyl radical. The decomposition can be accelerated by about 102 times with the use of catalysts based on organic salts of Fe, Mn, Co, etc. These salts also help to carry oxygen to the polymer molecules. The hydroxyl radical may capture hydrogen atoms, generating new macrorradicais. The alkoxy radical can recombine, generating a ketone group, or breaking the molecule, generating a new radical. The ketone group is susceptible to degradation by UV, which can cause rupture of the chain, by the mechanisms of Norish I and II. The free radical reactions involving organic polymer and oxygen generate many different molecules, which may contain the groups hydroxyl, carbonyl, ether, ester, carboxyl, etc., and also insaturations. Therefore, the final product from the polymer abiotic degradation generally consists of small and strongly oxygenated molecules, capable of crossing the cell wall (if present) and membrane, and that are metabolyzed in the cytoplasm of microorganisms with the help of the available enzymes, which depend on the chemical structure of the oligomers and the genetic potential of the organism. The antioxidant additives present in the formulation of a polymer resin may have the function of protecting it against degradation by deactivating the free radicals formed (primary antioxidants) or by decomposing hydroperoxides formed (secondary antioxidants). The former are useful during the service life of the material at ambient temperatures, whereas the latter are most useful when processing the material at elevated temperatures.

   Molecular weight reduction is generally a consequence of oxidative degradation (being e. g. the case of PE, PP and PS), what causes the collapse of the mechanical properties, and consequent disintegration (fragmentation) of the part.  Oxidative degradation also causes the incorporation of oxygen atoms in the chains and the rise of double bonds. The residue from abiotic degradation of a plastic material is no longer plastic, but a complex mixture of unsaturated and oxygenated oligomers, showing some hydrophilicity and being biodegradable by a large number of genera of naturally occurring microorganisms.

Table 1. Characteristics of oxo-biodegradable polyethylene films subjected to weathering for different periods of time

   In Table 1, it is possible to observe the changes in molecular weight and carbonyl concentration, as well as the consequent changes in mechanical properties, that occur with the outdoor weathering of films of a HDPE/LDPE blend for several months. The increase in crystallinity can be explained by the higher freedom of motion of smaller polymer chains, that could be rearranged in more crystalline structures.

   The rates of biodegradation of the residues from oxo-biodegradable materials are usually lower than those of most hydro-biodegradable materials. It generally takes a few years to quantitative biodegradation of the oxo-bio materials, depending on resin type, environmental conditions and formulation of additives used. Figure 1 shows the mineralization curves for an oxo-biodegradable HDPE/LLDPE blend biodegraded in composting conditions at two different temperatures. After a certain level of oxidative degradation, biofilms can be observed on the oxidized polymer residues. These biofilms mainly consist of fungi and bacteria, although archaea, algae and protozoa may also be present. The oxo-bio materials may be recycled with conventional polymer materials, provided that the resins still contain antioxidant additives in concentration sufficient to prevent oxidative degradation during processing and service life. Some people consider that the residues of oxo-biodegradable polymers contain toxic metals, but so far there is no evidence of toxicity of them to plants or animals. Instead, the cations of Fe, Co and Mn are micronutrients, acting as cofactors of enzymes. At very high concentrations, these cations may damage the plants, even because they increase the osmotic pressure of the environment and may dehydrate the root cells.

  Conventional materials, such as polyolefins and polystyrene, can be converted to oxobiodegradable materials by adding 1-5% (typically) of additives, what tend to increase the total cost of the resin in 5-15%. Some of the leading manufacturers of oxo-bio additives are Symphony Environmental (d2w), EPI (TDPA), Wells (reverse), Willow Ridge (PDQ) and others.

Figure 1. Biodegradation of polyethylene films as a function of incubation time at 25 and 58 oC in compost/perlite, at 50% relative humidity.




هي أحد فروع علم الكيمياء. ويدرس بنية وخواص وتفاعلات المركبات والمواد العضوية، أي المواد التي تحتوي على عناصر الكربون والهيدروجين والاوكسجين والنتروجين واحيانا الكبريت (كل ما يحتويه تركيب جسم الكائن الحي مثلا البروتين يحوي تلك العناصر). وكذلك دراسة البنية تتضمن استخدام المطيافية (مثل رنين مغناطيسي نووي) ومطيافية الكتلة والطرق الفيزيائية والكيميائية الأخرى لتحديد التركيب الكيميائي والصيغة الكيميائية للمركبات العضوية. إلى عناصر أخرى و تشمل:- كيمياء عضوية فلزية و كيمياء عضوية لا فلزية.


إن هذا العلم متشعب و متفرع و له علاقة بعلوم أخرى كثيرة ويعرف بكيمياء الكائنات الحية على اختلاف أنواعها عن طريق دراسة المكونات الخلوية لهذه الكائنات من حيث التراكيب الكيميائية لهذه المكونات ومناطق تواجدها ووظائفها الحيوية فضلا عن دراسة التفاعلات الحيوية المختلفة التي تحدث داخل هذه الخلايا الحية من حيث البناء والتخليق، أو من حيث الهدم وإنتاج الطاقة .


علم يقوم على دراسة خواص وبناء مختلف المواد والجسيمات التي تتكون منها هذه المواد وذلك تبعا لتركيبها وبنائها الكيميائيين وللظروف التي توجد فيها وعلى دراسة التفاعلات الكيميائية والاشكال الأخرى من التأثير المتبادل بين المواد تبعا لتركيبها الكيميائي وبنائها ، وللظروف الفيزيائية التي تحدث فيها هذه التفاعلات. يعود نشوء الكيمياء الفيزيائية إلى منتصف القرن الثامن عشر . فقد أدت المعلومات التي تجمعت حتى تلك الفترة في فرعي الفيزياء والكيمياء إلى فصل الكيمياء الفيزيائية كمادة علمية مستقلة ، كما ساعدت على تطورها فيما بعد .