المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
زكاة الفطرة
2024-11-05
زكاة الغنم
2024-11-05
زكاة الغلات
2024-11-05
تربية أنواع ماشية اللحم
2024-11-05
زكاة الذهب والفضة
2024-11-05
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05

ولادة أمنحتب الثالث كما ص ِّورت على جدران معبد الأقصر.
2024-05-18
سبب نزول سورة التوحيد
2024-09-02
Linear Potential I
18-8-2016
بروتين منشط ايض ألهدم Catabolite Activator Protein
5-10-2017
حكم العاجز عن القيام أصلا
2-12-2015
توزيع بواسون Poisson Distribution
4-11-2015

Probability-Some Definitions  
  
1826   12:50 صباحاً   date: 14-2-2016
Author : W.D. Wallis
Book or Source : Mathematics in the Real World
Page and Part : 33-34


Read More
Date: 8-3-2021 1402
Date: 13-4-2021 1301
Date: 17-3-2021 1179

In this chapter we consider the exact meaning of our everyday word “chance.”  We talk about chance in various ways: “there is a good chance of rain today,”  “they have no chance of winning,” “there is about one chance in three,” and so on. In some cases the meaning is very vague, but sometimes there is a precise numerical meaning. We shall use the word “probability” to formalize those cases where “chance” has a precise meaning, and we shall assign a numerical value to probability

Some Definitions

One way to think about the probability that an event will happen: suppose the same circumstances were to occur a great many times. In what fraction of cases would the event occur? This fraction is the probability that the event occurs. So probabilities will lie between 0 and 1; 0 represents impossibility, 1 represents absolute certainty. Often people express probabilities as percentages, rather than fractions. For example, consider the question: What is the chance it will rain tomorrow? We could ask, if the exact circumstances (current weather, time of year,  worldwide wind patterns, and so on) were reproduced in a million cases, in what fraction would it rain the next day? And while we cannot actually make these circumstances occur, in practice we can try to get a good estimate using weather records and geographical/geophysical theory.

Many problems will involve ordinary dice, as used for example in games like Monopoly. These have six faces, with the numbers 1–6 on them. Dice can be biased,  so that one face is more likely to show than another. If we roll an ordinary, unbiased die, what is the probability of rolling a 5? The six possibilities are equally likely, so the answer is 1/6 . If the die were biased, you might try rolling a few hundred times and keeping records.

Another idea that is commonly used in probability problems is the deck of playing cards. A standard deck has 52 cards; the cards are divided into four suits:

Diamonds and Hearts are red, Clubs and Spades are black. Each suit contains an Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3 and 2, and these are called the 13 denominations. (The Ace also doubles as a 1.) When a problem says “a card is dealt from a standard deck” it is assumed that all possible cards are equally likely, so the probability of any given card being dealt is 1/52 . There are four cards of each denomination, so the answer to “what is the probability of dealing a Queen,” or any other fixed denomination, is 4/52 , or 1/13 .

We say an event is random if you can’t predict its outcome for sure. This does not mean the chances of different outcomes are equal, although sometimes people use the word that way in everyday English. For example, if a die is painted black on 5 sides, white on one, then the chance of black is 5/6 and the chance of white is 1/6 .

This is random, although the two probabilities are not equal.

When we talk about the outcomes of a random phenomenon, we mean the distinct possible results; in other words, at most one of them can occur, and one must occur.

The set of all possible outcomes is called the sample space. Each different outcome will have a probability. These probabilities follow the following rules:

1. One and only one of the outcomes will occur.

2. Outcome X has a probability, P(X), and 0 ≤ P(X) ≤ 1.

3. The sum of the P(X), for all outcomes X, is 1.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.