المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

الخمود
4-4-2022
الإضاءة داخل الاستديو
1-12-2021
الحندقوق (البرسيم الحلو) Sour sweet clover
2024-03-20
BENCHMARKING
2024-09-30
بروبكندا
15-7-2019
أهم الأنواع في الإنتاج الحيواني - الخنازير
30-3-2021

Nicolaus(I) Bernoulli  
  
689   01:28 صباحاً   date: 31-1-2016
Author : H Bernhard
Book or Source : The Bernoulli family, in H Wussing and W Arnold
Page and Part : ...


Read More
Date: 29-1-2016 623
Date: 31-1-2016 724
Date: 27-1-2016 1065

Born: 21 October 1687 in Basel, Switzerland
Died: 29 November 1759 in Basel, Switzerland

 

Nicolaus(I) Bernoulli was a nephew of Jacob Bernoulli and Johann Bernoulli. His early education involved studying mathematics with his uncles. In fact it was Jacob Bernoulli who supervised Nicolaus's Master's degree at the University of Basel which he was awarded in 1704. Five years later he was received a doctorate for a dissertation which studied the application of probability theory to certain legal questions.

In 1712 Nicolaus Bernoulli toured Europe visiting Holland, England and France. It was in France that he met Montmort and the two mathematicians became close friends and collaborated on mathematical questions in a long correspondence.

Nicolaus Bernoulli was appointed to Galileo's chair at Padua in 1716 which Hermann had filled immediately prior to Nicolaus's appointment. There he worked on geometry and differential equations. In 1722 he left Italy and returned to his home town to take up the chair of logic at the University of Basel. After nine years, remaining at the University of Basel, he was appointed to the chair of law. In addition to these academic appointments, he did four periods as rector of the university.

J O Fleckenstein, writing in [1], describes Nicolaus Bernoulli's contribution to mathematics:-

Nicolaus was a gifted but not very productive mathematician. As a result, his most important achievements are hidden throughout his correspondence, which comprises about 560 items. The most important part of his correspondence with Montmort (1710-1712) was published in the latter's "Essai d'analyse sur les jeux de hazard" (Paris, 1713).

From Montmort's work we can see that Nicolaus formulated certain problems in the theory of probability, in particular the problem which today is known as the St Petersburg problem. Nicolaus also corresponded with Leibniz during the years 1712 to 1716. In these letters Nicolaus discussed questions of convergence, and showed that (1+x)n diverges for x > 0.

Nicolaus also corresponded with Euler. Again quoting [1]:-

In his letters to Euler (1742-43) he criticises Euler's indiscriminate use of divergent series. In this correspondence he also solved the problem of the sum of the reciprocal squares ∑ (1/n2) = π2/6, which had confounded Leibniz and Jacob Bernoulli.

Nicolaus Bernoulli assisted in the publication of Jacob Bernoulli's Ars conjectandi. Later Nicolaus edited Jacob Bernoulli's complete works and supplemented it with results taken from Jacob's diary. Other problems he worked on involved differential equations. He studied the problem of orthogonal trajectories, making important contributions by the construction of orthogonal trajectories to families of curves, and he proved the equality of mixed second-order partial derivatives. He also made significant contributions in studying the Riccati equation.

One of the great controversies of the time was the Newton Leibniz argument. As might be expected Nicolaus supported Leibniz but he did produce some good arguments in his favour such as observing that Newton failed to understand higher derivatives properly which had led him into errors in the problem of inverse central force in a resisting medium.

Nicolaus(I) Bernoulli received many honours for his work. For example he was elected a member of the Berlin Academy in 1713, a Fellow of the Royal Society of London in 1714, and a member of the Academy of Bologna in 1724.


 

  1. J O Fleckenstein, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830900410.html

Books:

  1. H Bernhard, The Bernoulli family, in H Wussing and W Arnold, Biographien bedeutender Mathematiker (Berlin, 1983).

Articles:

  1. E A Fellmann, Partielle Differentiation im Briefwechsel Eulers mit Niklaus I. Bernoulli - eine Miszelle, in History of mathematics (San Diego, CA, 1996), 223-236.
  2. M Hürlimann (ed.), Die Mathematikerfamilie Bernoulli, Grosse Schweizer (Zürich, 1942), 112-119.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.