المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر
تاريخ أسرة رخ مي رع
2024-05-05
حياة «رخ مي رع» كما دونها عن نفسه.
2024-05-05
مناظر المقبرة.
2024-05-05
الوزير رخ-مي-رع.
2024-05-05
مقبرة «رخ مي رع» وزخرفها.
2024-05-05
ألقاب رخ مي رع.
2024-05-05

الأفعال التي تنصب مفعولين
23-12-2014
صيغ المبالغة
18-02-2015
الجملة الإنشائية وأقسامها
26-03-2015
اولاد الامام الحسين (عليه السلام)
3-04-2015
معاني صيغ الزيادة
17-02-2015
انواع التمور في العراق
27-5-2016

Bleomycin  
  
2464   12:49 صباحاً   date: 14-12-2015
Author : P. C. Dedon and I. H. Goldberg
Book or Source : Chem. Res. Toxicol. 5, 311–332
Page and Part :


Read More
Date: 14-12-2015 2465
Date: 27-4-2016 1766
Date: 6-5-2021 1724

Bleomycin

 

 Bleomycin (BLM), discovered in 1962, is a family of low-molecular-weight metalloglycopeptides )Mr approximately 1500) produced by Streptomyces verticillus and isolated from the culture media of S. verticillus as copper complexes (1-3). It is widely used as an anticancer antibiotic in patients. BLM acts as a limited endonuclease and produces a variety of lesions in DNAs by a mechanism involving free radical attack on deoxyribose in both DNA strands. BLM damages DNAs in ways that mimic ionizing radiation. The detailed knowledge of the complicated chemistry of BLM and its interactions with DNA in vivo and in vitro drives much of its use in applications to molecular biology. BLM and structurally related analogues are considered radiomimetic and oxidative DNA-cleaving reagents, and as such they are utilized as chemical tools to study and understand the activities of this class of agents. Tools of molecular biology are also employed to understand the chemical, biological, and clinical aspects of the mechanism of action of BLMs. In addition, broadly used cloning strategies in several organisms use a gene conferring resistance to BLM and structurally related analogues as a selectable marker. Phleomycin (PLM) is used as the selective agent and is available in commercial formulations. BLM causes multiple changes to cells and is cytocidal, and its cytotoxicity is high where there is no or only a limited barrier to BLM reaching cellular targets. BLM effectively kills all types of cells tested. Cellular resistance is conferred in several ways, including protection by nucleosomes in chromatin, DNA repair, metabolic inactivation of BLM, BLM-resistance proteins, and restricted entry of BLM. An overview of resistance mechanisms was recently published (4).

1.Structure and Activated Complex

 The structurally complex BLMs contain a metal-binding domain and a DNA-binding domain (Fig.( 1. BLMs require metals and oxygen species for their activity (5-9). The metal-binding domain is also the site of oxygen activation and is attached to a disaccharide group; it binds redox-active transition metals, such as Fe(II), Co(II), Cu(II), Ni(II), and Zn(II). The most stable BLM–O2–metal complex is formed with cobalt (8). When a BLM-Fe(II)-O2 complex binds to DNA and the Fe(II(oxidizes to Fe(III), the complex attacks the C4′ position of DNA deoxyribose (10-13). The complex thereby behaves as a limited endonuclease.

Figure 1. Structures of bleomycins and phleomycins (16, 117-119).

The coplanar bithiazole moiety partially intercalates into the minor groove between bases of DNA. The cationic C-terminal amines are also involved in interactions with nucleic acids. The terminal amines in BLM A2 and BLM B2 are dimethylsulfonium propylamine and agmatine, respectively, and are similar in length and bear one positive charge (Fig. 1). BLM B2 produces considerably more DNA breaks and killing than BLM A2 over a wide range of chemical concentrations (14). Without the terminal amine, the BLM molecule no longer cleaves DNA or possesses antitumor activity.

BLM and structurally related PLM (15) differ in the oxidation state of their sulfur heterocycles (Fig.( 1. One of the two conjugated thiazole rings of the BLM bithiazole is modified by hydrogenation to 4,5-dihydrothiazole (thiazoline) in PLM (16, 17). In addition, the C-terminal amines in clinical preparations of BLMs differ chemically and quantitatively from prepared mixtures of PLMs. Tallysomycin is closely related to BLM (18, 19).

2. Anticancer Use

 BLM is an important therapeutic agent that is useful as a single agent in treating several human cancers and is widely used in combination chemotherapy and radiotherapy. The water-soluble product used in cancer treatment, Blenoxane, is a family of 11 metal-free congeners differing in their terminal amines. The clinical mixture (20) is comprised mainly of BLM A2 [approximately 55% to 70% (usually 68% to 69%)] and BLM B2 (approximately 25% to 32%). The effectiveness of BLM as an anticancer agent is associated with its ability to produce lesions in DNA (21, 22.(

 BLM is principally used in patients with lymphoma or a variety of solid tumors. It has been included in regimens for treating malignant and peripheral T-cell lymphomas, as well as in combination BEP chemotherapy (BLM, etoposide, cisplatin) for metastatic testicular teratoma and Hodgkins and non-Hodgkins lymphoma. BLM is also used in the chemotherapy and management of Kaposi's sarcoma (eg, pulmonary, gastrointestinal, epidemic, disseminated), as well as with vincristine in combination chemotherapy for epidemic Kaposi's sarcoma. BLM does not cause bone-marrow, hepatic, or renal toxicities, nor does it cause cardiosuppression. Pulmonary fibrosis is a side effect of BLM treatment that limits its use. The molecular mechanism of lung fibrosis is being investigated, but is not fully known. Patients with genetic susceptibility are particularly susceptible to lung fibrosis (23, 24). In animal models, taurine (25) or taurine and niacin (26) counter BLM-induced lung fibrosis. The newer BLM derivatives, peplomycin and liblomycin, were developed because of their lower pulmonary toxicity and broader antitumor spectrum in animal studies (27).

 3.Mechanism of Action on Nucleic Acids

3.1.Chemical Action on DNA: DNA Damage 

The unique chemical action of BLMs in the presence of oxygen and Fe(II) catalytically cleaves double-stranded DNA in vivo and in vitro. Single- and double-stranded breaks are produced, leaving 5′-phosphate- and 3′-phosphoglycolate-termini (11, 28-32). The most genotoxic and lethal lesions for cells are double-stranded breaks. BLM recognizes 5′-phosphoguanylyl(3′,5′)thymidine or 5′-phosphoguanylyl(3′,5′)cytosine sequences most frequently, releasing the pyrimidines when they are located to the 3′ side of guanosine (28-30, 33-36) and leaving DNA alkali-labile (32, 37). While cleavage at the first site is G-Py-specific, the second nucleophilic attack by a BLM–Fe(II)–O2 complex on the opposite DNA strand is not a sequence-specific cleavage and instead is probably targeted by the structural perturbation of the DNA at the first cleavage site (38, 39). Deoxyribose degradation also produces 3-(pyrimidin-1′-yl)-2-propenal and 3-(purin-9′-yl)-2-propenal (11, 31, 40(and oligonucleotide 3′-(phosphoro-2-O-glycolic acid) derivatives (11, 31, 41). DNA strand breaks are stoichiometric with the production of base propenals (42).

3.2.Preferential Cleavage between Nucleosomes 

BLM preferentially cleaves linker regions of chromatin between nucleosomes (43-47). The enhanced resistance of DNA bound to nucleosomes seems to be related to the necessity of a conformational change for BLM binding and intercalation. In yeast, internucleosomal cleavage and DNA degradation (46) and killing (48) are less pronounced in logarithmic phase cells than in cells that are in stationary phase. The cellular and molecular basis for this may relate to the highly effective use of BLM on particular solid tumors.

3.3.Bleomycin and Phleomycin 

PLM was discovered before bleomycin, but was too toxic in patients to be used as an anticancer drug. PLM is also substantially more effective than BLM on a per mole basis in yeast in producing cell killing (48), DNA breaks in intracellular DNAs (49), release of nucleosomes from chromatin (45) ,and genetic changes (50). Thus, the DNA lesions produced by the BLM and PLM could differ in their nature or frequency, or they could be processed differently by the cells. The mechanisms of BLM and PLM interaction with DNA in vitro also appear to differ (51-54). PLM exhibits a higher requirement than BLM for ferrous ions (49). Bithiazole intercalation in DNA is thought to be necessary for producing double-stranded, but not single-stranded, breaks in vitro (52). Accordingly, BLM produces more double-strand breaks than PLM in PM2 phage DNA (52, 54). Cu(II)BLM, but not Cu(II) PLM, intercalates (51). BLM, but not PLM, degrades relaxed DNA to a greater extent  than either positively or negatively superhelical DNA (54). On the other hand, BLM and PLM cleave DNA in vitro at similar preferred sites at similar frequencies (55, 56) and produce comparable numbers of DNA breaks under some conditions (57, 58).

3.4. RNA

BLM cleaves a variety of RNAs. The most studied have been transfer RNA and tRNA precursors. In contrast to DNA cleavage, BLM-induced RNA cleavage is usually wholly or predominately at a single site, often at a junction between single- and double-stranded RNA regions (59-62).

4.DNA Repair

4.1.Biochemical and Genetic Evidence for Radiomimetic Properties  The cellular processes that repair BLM-induced DNA lesions are not entirely known. The most important mechanisms for the repair of BLM-induced DNA damage are recombinational repair, base-excision repair, and post-replication repair. BLM and ionizing radiation produce similar lesions in DNA, although BLM produces a narrower spectrum of products than ionizing radiation. DNA breaks are introduced approximately linearly with increasing concentrations of BLM (14) and ionizing radiation (63). Some of the chromosomal lesions produced after either BLM treatments or ionizing irradiation can be ligated immediately and lead to a quick component of DNA rejoining, but other lesions require more time for processing before the termini of the DNA molecules become substrates for ligation (14, 63-65). For example, the unusual phosphoglycolate must be removed by the DNA 3′-repair diesterase activity of apurinic and apyrimidinic endonuclease (66, 67). After extension of the remaining DNA strand by one nucleotide, DNA ligase resynthesizes intact DNA molecules by forming a phosphodiester bond between adjacent 3′-hydroxyl and 5′-phosphoryl termini (14). Rapid and slower components of DNA rejoining have been identified in several laboratories. An ultrarapid phase of cellular recovery accompanies rapid repair in human cells (64,( 68, suggesting that some of the cytotoxic treatment effects of BLM could be counteracted in the clinic and reduce chemotherapeutic effectiveness.

The importance of DNA repair is shown by the many studies in various organisms of mutants hypersusceptible to killing by BLM and defective in repair of DNA lesions. All rad mutations of Saccharomyces cerevisiae (69-72) that confer hypersensitivity to killing by BLM analogues also confer cross-sensitivity to ionizing radiation (73-78), so pathways are shared for the repair of chromosomal damage by bleomycins and ionizing radiation. Moreover, mutant strains with altered resistance to lethal effects of BLM have been isolated and characterized in several laboratories, and direct selection for mutations conferring hypersensitivities to lethal effects of BLM resulted in mutants exhibiting cross-hypersensitivities to ionizing radiation.

4.2.Genetic Recombination and Mutation  Mechanisms of recombination are important for DNA repair and rejoining recombinant DNA. BLM is recombinogenic and mutagenic (38, 50, 79-85). The amount of recombination or mutation caused by BLM depends upon the assay system and treatment conditions. BLM was found to be weakly mutagenic to mitochondrial DNA (86).

5.Additional Cellular Targets

5.1.Membrane 

The plasma membrane restricts BLM internalization in some mammalian cells (87, 88). This could be due to the polar and charged groups on the BLM molecule. Membrane damage by BLM (68, 89(or cell electropermealization (88) circumvents this restriction.

5.2.Cell Wall 

BLM molecules are readily taken up into yeast cells, but are not equally distributed from cell to cell (89). BLM initially localizes to cell walls, causes cell wall and membrane damage, and aids the enzymatic conversion of cells to spheroplasts (75, 89-91). BLM alters the anchorage of several mannoproteins in the cell wall matrix of intact cells or isolated cell walls, and it disrupts essential cell wall polymers. These activities facilitate the entry of BLM into yeast cells.

5.3. BLM Hydrolase 

BLM hydrolase hydrolyzes and inactivates BLM. The enzyme is a thiol proteinase that has DNA-binding and peptide-cleavage domains. It binds DNA and RNA. BLM hydrolase activity protects cells from BLM toxicity, but limits the use of BLM in cancer chemotherapy. Although its normal cellular function is unknown, the enzyme is present in diverse organisms, including humans (92-96(and yeast (97-100). Expression of the yeast BLM hydrolase in mammalian cells results in resistance to BLM (101). A member of a galactose regulatory system (102, 103), yeast BLM hydrolase binds to nicked double-stranded DNA, single-stranded DNA, and RNA, without sequence specificity (104). This enzyme associates with plasma membranes and is in the cytosol (105). Human BLM hydrolase was recently shown to exhibit endopeptidase activity (106). This enzyme is thought to play a role in the development of resistance to BLM during chemotherapy (95, 107-109).

5.4. BLM Resistance Proteins 

Several proteins in microorganisms that produce BLM or structural analogues actually confer resistance to these products. Vectors bearing genes encoding these proteins confer high levels of resistance to BLM and related antibiotics and are used as cloning vehicles. The proteins bind and form stable complexes with BLM with high specificity, thereby preventing BLM from complexing with DNA. One of these proteins is encoded by the Streptoalloteichus hindustanus (Sh) ble gene (110-112) found on the Tn5 bacterial transposon, along with additional genes encoding resistance to other antibiotics. Expression of the Sh ble gene in transgenic mice reduced BLM toxicity in the mice and protected against lung fibrosis (113, 114). High levels of the protein were detected in lungs, kidney, and spleen.

5.5.Multiple Targets and Cytotoxicity 

Multiple cellular targets of BLM are expected because of the chemical mechanism of action of the molecule and because some of the BLM-hypersensitive mutants isolated in different organisms do not exhibit hypersensitivity to lethal effects of radiation. Multiple cellular enzymes are important for surviving the toxicities of BLM, and deficiencies in their function could reduce chances of survival. The relationship and significance of each cellular target of BLM to cellular toxicity are not known. Why BLM causes apoptosis in some types of cells and not in others is also unknown. BLM is not considered apoptotic at low concentrations. Far less is known about targets of BLM in cells than about the chemical mechanism of action of BLM in vitro on defined substrates.

Additional factors modulate BLM activity. Generally, BLM preferentially affects mitotic cells in the

G2-M phase of the cell cycle. BLM is unlikely to be a useful agent to study meiosis because of the abundant lesions the molecule produces in DNA. Intracellular metal ion concentrations and pH also modulate BLM activities (48, 115, 116). Studies elucidating the roles of the multiple targets of BLM and factors that modulate BLM activities will improve our understanding and efficacious uses of the widely studied BLM family of related compounds.

 

References

1.H. Umezawa, K. Maeda, T. Takeuchi, and Y. Okami (1966) J. Antibiotics 19, 200–209

2.H. Umezawa, Y. Suhara, T. Takita, and K. Maeda (1966) J. Antibiotics 19, 210–215

3.H. Umezawa (1976) GANN 19, 3–36

4.W. S. El-Deiry (1997) Curr. Opin. Oncol. 9, 79–87

5.E. A. Sausville, J. Peisach, and S. B. Horwitz (1976) Biochem. Biophys. Res. Commun. 91, 871-877.

6.R. M. Burger, J. Peisach, and S. B. Horwitz (1981) J. Biol. Chem. 256, 11636–11639

7.R. M. Burger, S. J. Projan, S. B. Horwitz, and J. Peisach (1986) J. Biol. Chem. 261, 1595515959.

8.J. Stubbe and J. Kozarich (1987) Chem. Rev. 87, 1107–1136

9.P. C. Dedon and I. H. Goldberg (1992) Chem. Res. Toxicol. 5, 311–332

10.R. M. Burger, J. Peisach, and S. B. Horwitz (1981) Life Sci. 28, 715–727

11.L. Giloni et al. (1981) J. Biol. Chem. 256, 8608–8615

12.J. W. Sam and J. Peisach (1993) Biochemistry 43, 1488–1491

13.L. F. Povirk, Y. H. Han, and R. J. Steighner (1989) Biochemistry 28, 5808–5814

14.C. W. Moore (1990) Biochemistry 29, 1342–1347

15.K. Maeda, H. Kosaka, K. Yagishita, and H. Umezawa (1956) J. Antibiotics 9, 82–85

16.T. Takita et al. (1972) J. Antibiotics 25, 197–199

17.D. A. McGowan, U. Jordis, D. K. Minster, and S. M. Hecht (1977) J. Am. Chem. Soc. 99, 8078-8079.

18.H. Kawaguchi et al. (1977) J. Antibiotics 30, 779–788

19.M. Konishi et al. (1977) J. Antibiotics 30, 789–805

20.C. Crooke and W. Bradner (1976) J. Med. 7, 333–425

21.S. K. Carter, S. T. Crooke, and H. Umezawa (1978) Bleomycin, Current Status and New Developments, Academic Press, New York

22.S. M. Hecht, ed. (1979) Bleomycin: Chemical, Biochemical and Biological Aspects, Springer-Verlag, New York

23.C. K. Haston, C. I. Amos, T. M. King, and E. L. Travis (1996) Cancer Res. 56, 2596–2601

24.R. P. Marshall, R. J. McAnulty, and G. J. Laurent (1997) Int. J. Biochem. Cell. Biol. 29, 107120.

25.R. E. Gordon, R. F. Heller, and R. F. Heller (1992) Adv. Exp. Med. Biol. 315, 319–328

26.G. Gurujeyalakshmi, M. A. Hollinger, and S. N. Giri (1998) Am. J. Respir. Cell. Mol. Biol. 18, 334-34.

27.T. Takita and T. Ogino (1987) Biomed. Pharmacother. 41, 219–226

28.A. D. D''Andrea and W. A. Haseltine (1978) Proc. Natl. Acad. Sci. USA 75, 3608–3612

29.M. Takeshita, P. Grollman, E. Ohtsubo, and H. Ohtsubo (1978) Proc. Natl. Acad. Sci. USA 75, 5983.5987.

30.A. P. Grollman and M. Takeshita (1980) Adv. Enzymol. Regul. 18, 67–83

31.N. Murugesan et al. (1985) Biochemistry 24, 5735–5744

32.H. Sugiyama, C. Xu, N. Murugesan, and S. M. Hecht (1985) J. Am. Chem. Soc. 107, 41014105.

33.M. Takeshita and P. Grollman (1979) In Bleomycin: Chemical, Biochemical and Biological Aspects (S. Hecht, ed.), Springer-Verlag, New York, pp. 207–221

34.C. K. Mirabelli, C.-H. Huang, A. W. Prestayko, and S. T. Crooke (1982) Cancer Chemother. Pharmacol. 8, 57–65

35.C. K. Mirabelli et al. (1982) Cancer Res. 42, 2779–2785

36.V. Murray and R. F. Martin (1985) J. Biol. Chem. 260, 10389–10391.

37.J. C. Wu, J. W. Kozarich, and J. Stubbe (1983) J. Biol. Chem. 258, 4694–4697

38.R. J. Steighner and L. F. Povirk (1990) Proc. Natl. Acad. Sci. USA 87, 8350–8354

39.L. F. Povirk, Y.-H. Han, and R. J. Steighner (1989) Biochem. 28, 8508–8514

40.R. M. Burger, A. R. Berkowitz, J. Peisach, and S. B. Horwitz (1980) J. Biol. Chem. 255, 11832-11838.

41.S. Uesugi et al. (1984) Nucleic Acids Res. 12, 1581–1592

42. R. M. Burger, J. Peisach, and S. B. Horwitz (1982) J. Biol. Chem. 257, 8612–8614

43. M. T. Kuo and T. C. Hsu (1978) Nature 271, 83–84

44. M. T. Kuo and T. C. Hsu (1978) Chromosoma 68, 229–240

45. C. W. Moore, (1988) Cancer Res. 48, 6837–6843

46. C. W. Moore, C. S. Jones, and L. A. Wall (1989) Antimicrob. Agents Chemother. 33, 15921599.

47. K. Sidik and M. J. Smerdon (1990) Biochem. 29, 7501–7511

48.C. W. Moore (1982) Cancer Res. 42, 929–933

49.C. W. Moore (1989) Cancer Res. 49, 6935–6940

50.J. F. Mc.Koy et al. (1995) Mutat. Res. DNA Repair 336, 19–27

51.L. F. Povirk, M. Hogan, N. Dattagupta, and M. Buechner (1981) Biochem. 20, 665–671

52.C.-H. Huang, C. K. Mirabelli, Y. Jan, and S. T. Crooke (1981) Biochem. 20, 233–238

53.C.-H. Huang, A. W. Prestayko, and S. T. Crooke (1982) Biochem. 21, 3704–3710

54.C.-H. Huang, C. K. Mirabelli, S. Mong, and S. T. Crooke (1983) Cancer Res. 43, 2849–2856

55.M. Takeshita et al. (1981) Biochem. 20, 7599–7606

56.J. Kross, W. D. Henner, S. M. Hecht, and W. A. Haseltine (1982) Biochem. 21, 4310–4318

57.H. Suzuki et al. (1969) J. Antibiot. 22, 446–448

58.R. Stern, J. A. Rose, and R. M. Friedman (1974) Biochemistry 13, 307–312

59.B. J. Carter et al. (1990) Proc. Natl. Acad. Sci. USA 87, 9373–9377

60.A. Huttenhofer, S. Hudson, H. F. Noller, and P. K. Mascharak (1992) J. Biol. Chem. 267, 24475-24471.

61.L. L. Guan et al. (1993) Biochem. Biophys. Res. Commun. 191, 1338–1346

62.M. V. Keck and S. M. Hecht (1995) Biochemistry 34, 12029–12037

63.C. W. Moore (1982) J. Bacteriol. 150, 1227–1233

64.C. W. Moore and J. B. Little (1985) Cancer Res. 45, 1982–1986

65.C. W. Moore (1988) J. Bacteriol. 170, 4991–4994

66.A. W. Johnson and B. Demple (1988) J. Biol. Chem. 263, 18017–18022

67.J. Laval (1996) Pathol. Biol. 44, 14–24

68.C. W. Moore, A. W. Malcolm, K. N. Tomkinson, and J. B. Little (1985) Cancer Res. 45, 1978-1981.

69.J. Game (1993) Semin. Cancer Biol. 4, 73–83

70.S. Prakash, P. Sung, and L. Prakash (1993) Annu. Rev. Genet. 27, 33–70

71.E. C. Friedberg (1995) DNA Genes and Mutagenesis. ASM Press, Washington, D.C

72.D. Ramotar and J.-Y. Masson (1996) Mol. Cell. Biochem. 158, 65–75.

73.C. W. Moore (1978) Mutat. Res. 51, 165–180

74.C. W. Moore (1980) J. Antibiot. 33, 1369–1375

75.C. W. Moore (1982) Antimicrob. Agents Chemother. 21, 595–600

76.C. W. Moore (1991) J. Bacteriol. 173, 3605–3608

77.  D. J. Keszenman, V. A. Salvo, and E. Nunes (1992) J. Bacteriol. 174, 3125–3132

78. C. H. He, J.-Y. Masson, and D. Ramotar (1996) Can. J. Microbiol. 42, 1263–1266

79. M. A. Hannan and A. Nasim (1978) Mutat. Res. 53, 309–316

80.M. A. Hannan, A. Nasim, and T. Brychcy (1978) Mutat. Res. 58, 107–110

81.B. K. Vig and R. Lewis (1978) Mutat. Res. 55, 121–145

82.C. W. Moore (1978) Mutat. Res. 58, 41–49

83.A. Severgnini, O. Lillo, and E. Nunes (1991) Environ. Mol. Mutagen. 18, 102–106

84.L. F. Povirk and M. J. F. Austin (1991) Mutat. Res. 257, 127–143

85.L. F. Povirk et al. (1994) J. Mol. Biol. 243, 216–226

86.L. R. Ferguson and P. M. Turner (1988) Eur. J. Cancer Clin. Oncol. 24, 591–596

87.G. Pron, J. Belehradek, Jr., S. Orlowski, and L. M. Mir (1994) Biochem. Pharmacol. 48, 301310.

88.L. M. Mir, O. Tounekti, and S. Orlowski (1996) Gen. Pharmacol. 27, 745–748

89.C. W. Moore, R. Del Valle, J. F. Mc.Koy, A. Pramanik, and R. E. Gordon (1992) Antimicrob. Agents Chemother. 36, 2497–2505

90. R. Beaudouin et al. (1993) Antimicrob. Agents Chemother. 37, 1264–1269

91. S. T. Lim, C. K. Jue, C. W. Moore, and P. N. Lipke (1995) J. Bacteriol. 177, 3534–3539

92. S. Akiyama et al. (1981) Biochem. Biophys. Res. Commun. 101, 55–60

93. J. S. Lazo, S. M. Sebti, and A. E. Filderman (1987) In Metabolism and Mechanism of Action of Anti-cancer Drugs (G. Powis and R. A. Prough, eds.), Taylor and Francis, London, pp. 194210.

.  94C. Nishimura, H. Suzuki, N. Tanaka, and H. Yamaguchi (1989) Biochim. Biophys. Acta 1012, 29-35.

95.S. M. Sebti et al. (1989) Biochemistry 28, 6544–6548

96. S. E. Montoya, R. E. Ferrell, and J. S. Lazo (1997) Cancer Res. 57, 4191–4195

97. N. G. Kambouris, D. J. Burke, and C. E. Creutz (1992) J. Biol. Chem. 267, 21570–21576

98.C. Enenkel and D. H. Wolf (1993) J. Biol. Chem. 268, 7036–7043

99.U. Magdolen, G. Müller, V. Magdolen, and W. Bandlow (1993) Biochim. Biophys. Acta 1171, 299-303.

100. H. E. Xu and S. A. Johnston (1994) J. Biol. Chem. 269, 21177–21183

101. A. Pei, T. P. Calmels, C. E. Creutz, and S. M. Sebti (1995) Mol. Pharmacol. 48, 676–681

102. L. Joshua-Tor, H. E. Xu, S. A. Johnson, and D. C. Rees (1995) Science 269, 945–950.  

103.W. Zheng, H. E. Xu, and S. A. Johnston (1997) J. Biol. Chem. 272, 30350–30355

104.W. Zheng and S. A. Johnston (1998) Mol. Cell. Biol. 18, 3580–3585.

105. I. Niemer, G. Müller, and G. Strobel (1997) Curr. Genet. 32, 41–51.

106.R. P. Koldamova, I. M. Lefterov, V. G. Gadjeva, and J. S. Lazo (1998) Biochemistry 37, 2282-2290.

107.D. Drocourt, T. Calmels, J. P. Reynes, M. Baron, and G. Tiraby (1990) Nucleic Acids Res. 18, 4009.

108.D. Bromme et al. (1996) Biochemistry 35, 6706–6714

109. A. A. Ferrando, A. Velasco, E. Campo, and C. Lopez-Otin (1996) Cancer Res. 56, 1746–1750

110.A. Gatignol, M. Baron, and G. Tiraby (1987) Mol. Gen. Genet. 207, 342–348

111. A. Gatignol, M. Dassain, and G. Tiraby (1990) Gene 91, 35–41

112.D. Drocourt et al. (1990) Nucl. Acids Res. 18, 4009

113.P. L. Tran et al. (1997) J. Clin. Invest. 99, 608–617

114.J. Weinbach et al. (1996) Cancer Res. 56, 5659–5665

115.C. W. Moore and D. A. Vossler (1980) Biochim. Biophys. Acta 610, 425–429

116.C. W. Moore (1994) Antimicrob. Agents Chemother. 38, 1615–1619.

117. T. Takita et al. (1972) J. Antibiot. 25, 755–758

118. H. Naganawa, Y. Muraoka, T. Takita, and H. Umezawa (1977) J. Antbiot. 30, 388–396

119. T. Takita et al. (1978) J. Antibiot. 31, 801–804. 




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.




بوقت قياسي وبواقع عمل (24)ساعة يوميا.. مطبعة تابعة للعتبة الحسينية تسلّم وزارة التربية دفعة جديدة من المناهج الدراسية
يعد الاول من نوعه على مستوى الجامعات العراقية.. جامعة وارث الانبياء (ع) تطلق مشروع اعداد و اختيار سفراء الجامعة من الطلبة
قسم الشؤون الفكرية والثقافية يعلن عن رفد مكتبة الإمام الحسين (ع) وفروعها باحدث الكتب والاصدارات الجديدة
بالفيديو: بمشاركة عدد من رؤساء الاقسام.. قسم تطوير الموارد البشرية في العتبة الحسينية يقيم ورشة عمل لمناقشة خطط (2024- 2025)