المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر



Planetary motions  
  
745   01:29 صباحاً   التاريخ: 2024-02-06
المؤلف :  Richard Feynman, Robert Leighton and Matthew Sands
الكتاب أو المصدر : The Feynman Lectures on Physics
الجزء والصفحة : Volume I, Chapter 9
القسم : علم الفيزياء / الفيزياء الكلاسيكية / الميكانيك /

Can we analyze the motion of a planet around the sun? Let us see whether we can arrive at an approximation to an ellipse for the orbit. We shall suppose that the sun is infinitely heavy, in the sense that we shall not include its motion. Suppose a planet starts at a certain place and is moving with a certain velocity; it goes around the sun in some curve, and we shall try to analyze, by Newton’s laws of motion and his law of gravitation, what the curve is. How? At a given moment it is at some position in space. If the radial distance from the sun to this position is called r, then we know that there is a force directed inward which, according to the law of gravity, is equal to a constant times the product of the sun’s mass and the planet’s mass divided by the square of the distance. To analyze this further we must find out what acceleration will be produced by this force. We shall need the components of the acceleration along two directions, which we call x and y. Thus, if we specify the position of the planet at a given moment by giving x and y (we shall suppose that z is always zero because there is no force in the z–direction and, if there is no initial velocity vz, there will be nothing to make z other than zero), the force is directed along the line joining the planet to the sun, as shown in Fig. 9–5.

Fig. 9–5. The force of gravity on a planet.

 

From this figure we see that the horizontal component of the force is related to the complete force in the same manner as the horizontal distance x is to the complete hypotenuse r, because the two triangles are similar. Also, if x is positive, Fx is negative. That is, Fx/|F|=−x/r, or Fx= −|F|x/r= −GMmx/r3. Now we use the dynamical law to find that this force component is equal to the mass of the planet times the rate of change of its velocity in the x–direction. Thus, we find the following laws:

This, then, is the set of equations we must solve. Again, in order to simplify the numerical work, we shall suppose that the unit of time, or the mass of the sun, has been so adjusted (or luck is with us) that GM≡1. For our specific example we shall suppose that the initial position of the planet is at x=0.500 and y=0.000, and that the velocity is all in the y–direction at the start, and is of magnitude 1.630. Now how do we make the calculation? We again make a table with columns for the time, the x–position, the x–velocity vx, and the x–acceleration ax; then, separated by a double line, three columns for position, velocity, and acceleration in the y–direction. In order to get the accelerations, we are going to need Eq. (9.17); it tells us that the acceleration in the x–direction is −x/r3, and the acceleration in the y–direction is −y/r3, and that r is the square root of x2+y2. Thus, given x and y, we must do a little calculating on the side, taking the square root of the sum of the squares to find r and then, to get ready to calculate the two accelerations, it is useful also to evaluate 1/r3. This work can be done rather easily by using a table of squares, cubes, and reciprocals: then we need only multiply x by 1/r3, which we do on a slide rule.

Our calculation thus proceeds by the following steps, using time intervals ϵ=0.100: Initial values at t=0:

In this way we obtain the values given in Table 9–2, and in 20 steps or so we have chased the planet halfway around the sun! In Fig. 9–6 are plotted the x– and y–coordinates given in Table 9–2. The dots represent the positions at the succession of times a tenth of a unit apart; we see that at the start the planet moves rapidly and at the end it moves slowly, and so the shape of the curve is determined. Thus, we see that we really do know how to calculate the motion of planets!

Table 9–2

Fig. 9–6. The calculated motion of a planet around the sun.

 

Now let us see how we can calculate the motion of Neptune, Jupiter, Uranus, or any other planet. If we have a great many planets, and let the sun move too, can we do the same thing? Of course, we can. We calculate the force on a particular planet, let us say planet number i, which has a position xi,yi,zi (i=1 may represent the sun, i=2 Mercury, i=3 Venus, and so on). We must know the positions of all the planets. The force acting on one is due to all the other bodies which are located, let us say, at positions xi,yi,zi. Therefore, the equations are

 

Further, we define rij as the distance between the two planets i and j; this is equal to

 

Also, ∑ means a sum over all values of j—all other bodies—except, of course, for j=i. Thus, all we have to do is to make more columns, lots more columns. We need nine columns for the motions of Jupiter, nine for the motions of Saturn, and so on. Then when we have all initial positions and velocities, we can calculate all the accelerations from Eq. (9.18) by first calculating all the distances, using Eq. (9.19). How long will it take to do it? If you do it at home, it will take a very long time! But in modern times we have machines which do arithmetic very rapidly; a very good computing machine may take 1 microsecond, that is, a millionth of a second, to do an addition. To do a multiplication takes longer, say 10 microseconds. It may be that in one cycle of calculation, depending on the problem, we may have 30 multiplications, or something like that, so one cycle will take 300 microseconds. That means that we can do 3000 cycles of computation per second. In order to get an accuracy, of, say, one part in a billion, we would need 4×105 cycles to correspond to one revolution of a planet around the sun. That corresponds to a computation time of 130 seconds or about two minutes. Thus it takes only two minutes to follow Jupiter around the sun, with all the perturbations of all the planets correct to one part in a billion, by this method! (It turns out that the error varies about as the square of the interval ϵ. If we make the interval a thousand times smaller, it is a million times more accurate. So, let us make the interval 10,000 times smaller.)

So, as we said, we began this chapter not knowing how to calculate even the motion of a mass on a spring. Now, armed with the tremendous power of Newton’s laws, we can not only calculate such simple motions but also, given only a machine to handle the arithmetic, even the tremendously complex motions of the planets, to as high a degree of precision as we wish!




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.