المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

غزوة خيبر
5-12-2016
تصنيف الدول- الدولة المركبة الاتحادية (اللامركزية)
20-12-2021
البروتينات النووية (النيوكليوبروتين) Nucleo Proteins
3-4-2016
Rudolf Otto Sigismund Lipschitz
22-12-2016
جرائم التزوير والاتجار في المسروقات
2-7-2019
الحملات الصحفية
14-2-2022

Sankara Narayana  
  
1219   02:37 صباحاً   date: 21-10-2015
Author : G Ifrah,
Book or Source : A universal history of numbers : From prehistory to the invention of the computer
Page and Part : ...


Read More
Date: 21-10-2015 1281
Date: 21-10-2015 1109
Date: 2180

Born: about 840 in India
Died: about 900 in India

 

Sankara Narayana (or Shankaranarayana) was an Indian astronomer and mathematician. He was a disciple of the astronomer and mathematician Govindasvami. His most famous work was the Laghubhaskariyavivarana which was a commentary on the Laghubhaskariya of Bhaskara I which in turn is based on the work of Aryabhata I.

The Laghubhaskariyavivarana was written by Sankara Narayana in 869 AD for the author writes in the text that it is written in the Shaka year 791 which translates to a date AD by adding 78. It is a text which covers the standard mathematical methods of Aryabhata I such as the solution of the indeterminate equation by = ax ± c (abc integers) in integers which is then applied to astronomical problems. The standard Indian method involves using the Euclidean algorithm. It is called kuttakara ("pulveriser") but the term eventually came to have a more general meaning like "algebra". The paper [2] examines this method. The reader who is wondering what the determination of "mati" means in the title of the paper [2] then it refers to the optional number in a guessed solution and it is a feature which differs from the original method as presented by Bhaskara I.

Perhaps the most unusual feature of the Laghubhaskariyavivarana is the use of katapayadi numeration as well as the place-value Sanskrit numerals which Sankara Narayana frequently uses. Sankara Narayana is the first author known to use katapayadi numeration with this name but he did not invent it for it appears to be identical to a system invented earlier which was called varnasamjna. The numeration system varnasamjna was almost certainly invented by the astronomer Haridatta, and it was explained by him in a text which many historians believe was written in 684 but this would contradict what Sankara Narayana himself writes. This point is discussed below. First we should explain ideas behind Sankara Narayana's katapayadi numeration.

The system is based on writing numbers using the letters of the Indian alphabet. Let us quote from [1]:-

... the numerical attribution of syllables corresponds to the following rule, according to the regular order of succession of the letters of the Indian alphabet: the first nine letters represent the numbers 1 to 9 while the tenth corresponds to zero; the following nine letters also receive the values 1 to 9 whilst the following letter has the value zero; the next five represent the first five units; and the last eight represent the numbers 1 to 8.

Under this system 1 to 5 are represented by four different letters. For example 1 is represented by the letters ka, ta, pa, ya which give the system its name (ka, ta, pa, ya becomes katapaya). Then 6, 7, 8 are represented by three letters and finally nine and zero are represented by two letters.

The system was a spoken one in the sense that consonants and vowels which are not vocalised have no numerical value. The system is a place-value system with zero but one may reasonably ask why such an apparently complicated numeral system might ever come to be invented. Well the answer must be that it lead to easily remembered mnemonics. In fact many different "words" could represent the same number and this was highly useful for works written in verse as the Indian texts tended to be.

Let us return to the interesting point about the date of Haridatta. Very unusually for an Indian text, Sankara Narayana expresses his thanks to those who have gone before him and developed the ideas about which he is writing. This in itself is not so unusual but the surprise here is that Sankara Narayana claims to give the list in chronological order. His list is

Aryabhata I
Varahamihira
Bhaskara I
Govindasvami
Haridatta

[Note that we have written Bhaskara I where Sankara Narayana simply wrote Bhaskara. The more famous Bhaskara II lived nearly 300 years after Sankara Narayana.]

The chronological order in the list agrees with the dates we have for the first four of these mathematicians. However, putting Haridatta after Govindasvami would seem an unlikely mistake for Sankara Narayana to make if Haridatta really did write his text in 684 since Sankara Narayana was himself a disciple of Govindasvami. If the dating given by Sankara Narayana is correct then katapayadi numeration had been invented only a few years before he wrote his text.


 

Books:

  1. G Ifrah, A universal history of numbers : From prehistory to the invention of the computer (London, 1998).
  2. P K Majumdar, A rationale of Bhatta Govinda's method for solving the equation ax - c = by and a comparative study of the determination of 'Mati' as given by Bhaskara I and Bhatta Govinda, Indian J. Hist. Sci. 18 (2) (1983), 200-205.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.