المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
{ان أولى الناس بإبراهيم للذين اتبعوه}
2024-10-31
{ما كان إبراهيم يهوديا ولا نصرانيا}
2024-10-31
أكان إبراهيم يهوديا او نصرانيا
2024-10-31
{ قل يا اهل الكتاب تعالوا الى كلمة سواء بيننا وبينكم الا نعبد الا الله}
2024-10-31
المباهلة
2024-10-31
التضاريس في الوطن العربي
2024-10-31

قيم
29-11-2019
THERMAL EQUILIBRIUM
6-12-2020
 تفاعل الإشعاع مع المادة
12-4-2016
ترجمة أبي الحجاج المنتشاقري
2024-09-16
Riemann Sum
25-8-2018
ادارة أسمدة المزارع الخضراء
19-7-2019

Aristaeus the Elder  
  
597   01:53 صباحاً   date: 18-10-2015
Author : J L Coolidge
Book or Source : A history of the conic sections and quadric surfaces
Page and Part : ...


Read More
Date: 20-10-2015 705
Date: 20-10-2015 816
Date: 18-10-2015 632

Born: about 370 BC in Greece
Died: about 300 BC

 

Aristaeus the Elder was probably older than, but still a contemporary of, Euclid. We know practically nothing of his life except that Pappus refers to him as Aristaeus the Elder which presumably means that Pappus was aware of another later mathematician also named Aristaeus. We have no record of such a person but we do point out below a possible confusion which may result from there being two mathematicians called Aristaeus.

Pappus gave Aristaeus great credit for a work entitled Five Books concerning Solid Loci which was used by Pappus but has now been lost. 'Solid loci' is the Greek name for conic sections so it is rather confusing that there is another reference by a later writer to a work by Aristaeus called Five Books concerning Conic Sections. However these two works are now thought to be the same.

Pappus describes the work as:-

... five books of Solid Loci connected with the conics.

and also claims (if this is not a latter addition to the text) that Euclid compiled elementary results on conics in his treatise Conics while Aristaeus's results, much deeper, original and specialised, were not included by Euclid who preferred to leave them in their original presentation due to Aristaeus.

Heath makes a guess at the possible contents of the Solid Loci and writes [3]:-

A very large portion of the standard properties of conics admit of being stated in the form of locus theorems ... But it may be assumed that Aristaeus's work was not merely a collection of the ordinary propositions transformed in this way; it would deal with new locus theorems not implied in the fundamental definitions and properties of the conics, such as ... the theorems of the three- and four-line locus. But one (to us) ordinary property, the focus directrix property, was, as it seems to me, in all probability included.

Heath refers to theorems of the three- and four-line locus in the above quote and we should explain what these are. For the three line locus we are given a point P and three directed lines ab, and c drawn to meet at given angles, three fixed straight lines. Then the locus of P such that ac : b2 is a given constant is a conic. The four-line locus is similar. We are given a point P and four directed lines abc, and d drawn to meet at given angles, four fixed straight lines. Then the locus of P such that ac : bd is a given constant is a conic.

There is a reference to Aristaeus in the works of Hypsicles where he refers to Aristaeus as the author of a book Concerning the Comparison of Five Regular Solids. Heath believes that, although it is not certain whether this is Aristaeus the Elder, the results described make it quite probable that it is. Hypsicles tells us that, in this work, Aristaeus proved that [3]:-

... the same circle circumscribes both the pentagon of the dodecahedron and the triangle of the icosahedron inscribed in the same sphere.

Heath's opinion that the Aristaeus referred to by Hypsicles this is Aristaeus the Elder has been disputed by some historians, and there is a possibility that Hypsicles refers to Aristaeus the Younger thus making sense of Pappus's comments which we referred to in the first paragraph.

The work of both Aristaeus and Euclid on conics was, almost 200 years later, further developed by Apollonius. This work by Apollonius made the theory of conics as developed by Aristaeus and Euclid obsolete


Books:

1.J L Coolidge, A history of the conic sections and quadric surfaces (Oxford, 1945).

2.T L Heath, A History of Greek Mathematics (2 Vols.) (Oxford, 1921).

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.