المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية
آخر المواضيع المضافة
الجهاز التناسلي الذكري في الدجاج الجهاز التنفسي للدجاج محاسبة المسؤولية في المصرف (الإدارة اللامركزية والعلاقات الإنسانية ـــ الإدارة اللامركزية في المصرف) أثر نظرية الظروف الاستثنائية على تحصيل أموال الدولة وتطبيقاتها في القانون المدني أثر نظرية الظروف الاستثنائية على تحصيل أموال الدولة وتطبيقاتها في القانون الإداري دور التشريعات والسلطات الرقابية في تسعير المنتجات والخدمات المصرفية موضوع الملاحظة في الاستنباط القضائي ملكة الاستنباط القضائي الجهاز الهضمي للدجاج إستراتيجيات تسعير المنتجات والخدمات المصرفية في الاطار الرقابي (انواع المنتجات والخدمات المصرفية) طـرق تـحديـد سعـر الفـائـدة علـى القـروض السـكـنـيـة (العـقاريـة) تـحليـل ربحيـة العميـل من القـروض الاستـهلاكيـة (الشخصيـة) المـقـسطـة الدجاج المحلي العراقي معجزة الدين الاسلامي موضوع الإعجاز

الرياضيات
عدد المواضيع في هذا القسم 9764 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

الأفعال التي تنصب مفعولين
23-12-2014
صيغ المبالغة
18-02-2015
الجملة الإنشائية وأقسامها
26-03-2015
اولاد الامام الحسين (عليه السلام)
3-04-2015
معاني صيغ الزيادة
17-02-2015
انواع التمور في العراق
27-5-2016

The development of group theory  
  
853   02:10 صباحاً   date: 12-10-2015
Author : B Chandler and W Magnus
Book or Source : The history of combinatorial group theory
Page and Part : ...


Read More
Date: 12-10-2015 1313
Date: 11-10-2015 1118
Date: 12-10-2015 854

The study of the development of a concept such as that of a group has certain difficulties. It would be wrong to say that since the non-zero rationals form a group under multiplication then the origin of the group concept must go back to the beginnings of mathematics. Rather we must take the view that group theory is the abstraction of ideas that were common to a number of major areas which were being studied essentially simultaneously. group theory is the abstraction of ideas that were common to a number of major areas which were being studied essentially simultaneously.

 

The three main areas that were to give rise to group theory are:-theory are:-

  1. geometry at the beginning of the 19th Century,
  2. number theory at the end of the 18number theory at the end of the 18th Century,
  3. the theory of algebraic equations at the end of the 18th Century leading to the study of permutations.

(1) Geometry has been studied for a very long time so it is reasonable to ask what happened to geometry at the beginning of the 19th Century that was to contribute to the rise of the group concept. Geometry had began to lose its 'metric' character with projective and non-euclidean geometries being studied. Also the movement to study geometry in n dimensions led to an abstraction in geometry itself. The difference between metric and incidence geometry comes from the work of Monge, his student Carnot and perhaps most importantly the work of Poncelet. Non-euclidean geometry was studied by euclidean geometry was studied by Lambert, Gauss, Lobachevsky and János Bolyai among others.

Möbius in 1827, although he was completely unaware of the group concept, began to classify geometries using the fact that a particular geometry studies properties invariant under a particular group. Steiner in 1832 studied notions of synthetic geometry which were to eventually become part of the study of transformation groups.

(2) In 1761 Euler studied modular arithmetic. In particular he examined the remainders of powers of a number modulo n. Although Euler's work is, of course, not stated in group theoretic terms he does provide an example of the decomposition of an abelian group into cosets of a subgroup. He also proves a special case of the order of a subgroup being a divisor of the order of the group.

Gauss in 1801 was to take Euler's work much further and gives a considerable amount of work on modular arithmetic which amounts to a fair amount of theory of abelian groups. He examines orders of elements and proves (although not in this notation) that there is a subgroup for every number dividing the order of a cyclic group. Gauss also examined other abelian groups. He looked at binary quadratic forms

ax2 + 2bxy + cy2 where abc are integers.

Gauss examined the behaviour of forms under transformations and substitutions. He partitions forms into classes and then defines a composition on the classes. classes and then defines a composition on the classes. Gauss proves that the order of composition of three forms is immaterial so, in modern language, the associative law holds. In fact modern language, the associative law holds. In fact Gauss has a finite abelian group and later (in 1869) Schering, who edited Gauss's works, found a basis for this abelian group.

(3) Permutations were first studied by Lagrange in his 1770 paper on the theory of algebraic equations. Lagrange's main object was to find out why cubic and quartic equations could be solved algebraically. In studying the cubic, for example, Lagrange assumes the roots of a given cubic equation are Lagrangeassumes the roots of a given cubic equation are x', x'' and x'''. Then, taking 1, ww2 as the cube roots of unity, he examines the expression

R = x' + wx'' + w2x'''

and notes that it takes just two different values under the six permutations of the roots x', x'', x'''. Although the beginnings of permutation group theory can be seen in this work, Lagrange never composes his permutations so in some sense never discusses groups at all.

The first person to claim that equations of degree 5 could not be solved algebraically was degree 5 could not be solved algebraically was Ruffini. In 1799 he published a work whose purpose was to demonstrate the insolubility of the general quintic equation. Ruffini's work is based on that of Lagrange but Ruffiniintroduces groups of permutations. These he calls permutazione and explicitly uses the closure property (the associative law always holds for permutations). Ruffini divides his permutazione into types, namely permutazione semplice which are cyclic groups in modern notation, and permutazione composta which are non-cyclic groups. The permutazione composta Ruffini divides into three types which in today's notation are intransitive groups, transitive imprimitive groups and transitive primitive groups.

Ruffini's proof of the insolubility of the quintic has some gaps and, disappointed with the lack of reaction to his paper Ruffini published further proofs. In a paper of 1802 he shows that the group of permutations associated with an irreducible equation is transitive taking his understanding well beyond that of Lagrange.

Cauchy played a major role in developing the theory of permutations. His first paper on the subject was in 1815 but at this stage Cauchy is motivated by permutations of roots of equations. However, in 1844, Cauchy published a major work which sets up the theory of permutations as a subject in its own right. He introduces the notation of powers, positive and negative, of permutations (with the power 0 giving the identity permutation), defines the order of a permutation, introduces cycle notation and used the term système des substitutions conjuguées for a group. Cauchy calls two permutations similar if they have the same cycle structure and proves that this is the same as the permutations being conjugate.

Abel, in 1824, gave the first accepted proof of the insolubility of the quintic, and he used the existing ideas on permutations of roots but little new in the development of group theory.

Galois in 1831 was the first to really understand that the algebraic solution of an equation was related to the structure of a group le groupe of permutations related to the equation. By 1832 Galois had discovered that special subgroups (now called normal subgroups) are fundamental. He calls the decomposition of a group into cosets of a subgroup a proper decomposition if the right and left coset decompositions coincide. Galois then shows that the non-abelian simple group of smallest order has order 60.

Galois' work was not known until Liouville published Galois' papers in 1846. Liouville saw clearly the connection between Cauchy's theory of permutations and Galois' work. However Liouville failed to grasp that the importance of Galois' work lay in the group concept.

Betti began in 1851 publishing work relating permutation theory and the theory of equations. In fact Betti was the first to prove that Galois' group associated with an equation was in fact a group of permutations in the modern sense. Serret published an important work discussing Galois' work, still without seeing the significance of the group concept.

Jordan, however, in papers of 1865, 1869 and 1870 shows that he realises the significance of groups of permutations. He defines isomorphism of permutation groups and proves the Jordan-Hölder theorem for permutation groups. Hölder was to prove it in the context of abstract groups in 1889.

Klein proposed the Erlangen Program in 1872 which was the group theoretic classification of geometry. Groups were certainly becoming centre stage in mathematics.

Perhaps the most remarkable development had come even before Betti's work. It was due to the English mathematician Cayley. As early as 1849 Cayley published a paper linking his ideas on permutations with Cauchy's. In 1854 Cayley wrote two papers which are remarkable for the insight they have of abstract groups. At that time the only known groups were groups of permutations and even this was a radically new area, yet Cayley defines an abstract group and gives a table to display the group multiplication. He gives the 'Cayley tables' of some special permutation groups but, much more significantly for the introduction of the abstract group concept, he realised that matrices and quaternions were groups.

Cayley's papers of 1854 were so far ahead of their time that they had little impact. However when Cayley returned to the topic in 1878 with four papers on groups, one of them called The theory of groups, the time was right for the abstract group concept to move towards the centre of mathematical investigation.Cayley proved, among many other results, that every finite group can be represented as a group of permutations. Cayley's work prompted Hölder, in 1893, to investigate groups of order

p3pq2pqr and p4.

Frobenius and Netto (a student of Kronecker) carried the theory of groups forward. As far as the abstract concept is concerned, the next major contributor was von Dyck. von Dyck, who had obtained his doctorate under Klein's supervision then became Klein's assistant. Von Dyck, with fundamental papers in 1882 and 1883, constructed free groups and the definition of abstract groups in terms of generators and relations.

Group theory really came of age with the book by Burnside Theory of groups of finite order published in 1897. The two volume algebra book by Heinrich Weber (a student of Dedekind) Lehrbuch der Algebra published in 1895 and 1896 became a standard text. These books influenced the next generation of mathematicians to bring group theory into perhaps the most major theory of 20th Century mathematics

______________________________________________________________________________________________

  1. B Chandler and W Magnus, The history of combinatorial group theory : A case study in the history of ideas (New York-Berlin, 1982).
  2. R Franci, On the axiomatization of group theory by American mathematicians : 1902-1905, Amphora (Basel, 1992), 261-277.
  3. J Gray, Otto Hölder and group theory, Math. Intelligencer 16 (3) (1994), 59-61.
  4. B M Kiernan, The development of Galois theory from Lagrange to Artin, Archive for History of Exact Sciences 8 (1971), 40-154.
  5. I Kleiner, The evolution of group theory : a brief survey, Mathematics magazine 59 (4) (1986), 195-215.
  6. J J Nicholson, Otto Holder and the Development of Group Theory and Galois Theory (Ph.D. Thesis Oxford, 1993).
  7. L Novy, Origins of Modern Algebra (Prague, 1973).
  8. K V H Parshall, A study in group theory : Leonard Eugene Dickson's 'Linear groups', Math. Intelligencer 13 (1) (1991), 7-11.
  9. H Wussing, The Genesis of the Abstract Group Concept (Cambridge, MA., 1984).

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.





العتبة العباسية تطلق مسابقة فن التصوير الفوتوغرافي الثانية للهواة ضمن فعاليات أسبوع الإمامة الدولي
لجنة البرامج المركزيّة تختتم فعاليّات الأسبوع الرابع من البرنامج المركزي لمنتسبي العتبة العباسيّة
قسم المعارف: عمل مستمر في تحقيق مجموعة من المخطوطات ستسهم بإثراء المكتبة الدينية
متحف الكفيل يشارك في المؤتمر الدولي الثالث لكلية الآثار بجامعة الكوفة