المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

مرض الإمساك الذي يصيب الابقار (الأمراض غير المعدية)
2024-10-09
وجوه الأحد
2023-11-27
مصادر الأخبار الخارجية
2023-05-25
معنى كلمة بسق‌
21-1-2016
الأمثل في تفسير كتاب الله المنزل
27-11-2014
الكون التخاطري
2023-06-22

Knight Graph  
  
1727   04:39 مساءً   date: 11-5-2022
Author : Ahrens, W
Book or Source : Mathematische Unterhaltungen und Spiele. Leipzig, Germany: Teubner
Page and Part : ...


Read More
Date: 18-3-2022 1361
Date: 27-3-2022 1485
Date: 15-5-2022 1173

Knight Graph

 

KnightsTourGraph

The m×n knight graph is a graph on mn vertices in which each vertex represents a square in an m×n chessboard, and each edge corresponds to a legal move by a knight (which may only make moves which simultaneously shift one square along one axis and two along the other). It is therefore a (1,2)-leaper graph.

The 3×3 knight graph consists of an 8-cycle together with an (unreachable from all of the other squares) isolated central vertex.

The number of edges in the n×n knight graph is 4(n-2)(n-1) (8 times the triangular numbers), so for n=1, 2, ..., the first few values are 0, 0, 8, 24, 48, 80, 120, ... (OEIS A033996).

Knight graphs are bipartite and therefore are perfect.

The following table summarizes some named graph complements of knight graphs.

G G^_
(2,3)-knight graph (2,3)-queen graph
(3,3)-knight graph (3,3)-queen graph

The m×n knight graph is implemented in the Wolfram Language as KnightTourGraph[mn], and precomputed properties are available in using GraphData[{"Knight"{mn}}].

Closed formulas for the numbers c_k of k-graph cycles of the n×n knight graph are given by c_k=0 for k odd and

c_4 = {0 for n<=3; 2(3n^2-18n+26) otherwise

(1)

(E. Weisstein, Nov. 16, 2014).

A knight's path is a sequence of moves by a knight such that each square of the board is visited exactly once. It is therefore a Hamiltonian path on the corresponding knight graph. Conrad et al. (1994) shows that a knight's path exists on an n×n board iff n>=5.

KnightsTours

The above figures show six knight's paths on an 8×8 chessboard, all but the first of which are re-entrant. The final path has the additional property that it is a semimagic square with row and column sums of 260 and main diagonal sums of 348 and 168 (Steinhaus 1999, p. 30).

If the final position of such a path is a knight's move away from the initial position of the knight, the path is called re-entrant or closed and corresponds to a Hamiltonian cycle on the underlying knight graph. Conrad et al. (1994) shows that a knight's tour exists on an n×n board iff n>=6 and n is even.

Backtracking algorithms (in which the knight is allowed to move as far as possible until it comes to a blind alley, at which point it backs up some number of steps and then tries a different path) can be used to find knight's tours, but such methods can be very slow. Warnsdorff (1823) proposed an algorithm that finds a path without any backtracking by computing ratings for "successor" steps at each position. Here, successors of a position are those squares that have not yet been visited and can be reached by a single move from the given position. The rating is highest for the successor whose number of successors is least. In this way, squares tending to be isolated are visited first and therefore prevented from being isolated (Roth). The time needed for this algorithm grows roughly linearly with the number of squares of the chessboard, but unfortunately computer implementation show that this algorithm runs into blind alleys for chessboards bigger than 76×76, despite the fact that it works well on smaller boards (Roth).

KnightsTours5-8

Conrad et al. (1994) discovered another linear time algorithm and proved that it solves the Hamiltonian path problem for all n>=5. The Conrad et al. algorithm works by decomposition of the chessboard into smaller chessboards (not necessarily square) for which explicit solutions are known. This algorithm is rather complicated because it has to deal with many special cases, but has been implemented in the Wolfram Language by A. Roth. Example tours are illustrated above for n×n boards with n=5 to 8.

The numbers of (undirected) closed knight's tours (i.e., Hamiltonian cycles) on a (2n)×(2n) chessboard for n=1, 2, ... are 0, 0, 9862, 13267364410532, ... (OEIS A001230; Ball and Coxeter 1987; Wegener 2000, p. 369; Elkies and Stanley 2003). There are no closed tours for m×m boards with m odd. Kraitchik (1942, pp. 264-265) also notes that there are 1728 total paths on the 5×5 square, 8 of which are symmetric, and there are five doubly symmetric paths on the 6×6 square. The number of cycles covering the directed knight's graph for an 8×8 chessboard was computed by Wegener and Löbbing (1996) as 8121130233753702400. They also computed the number of undirected tours, obtaining an incorrect answer 33439123484294 (which is not divisible by 4 as it must be). The correct value of 13267364410532 appears in Wegener's subsequent book (Wegener 2000), and also agrees with unpublished calculations of B. D. McKay.

The longest "uncrossed" knight's tours on an n×n board for n=3, 4, ... are 2, 5, 10, 17, 24, 35, ... (OEIS A003192).

The following table extends and corrects some additional results given by Kraitchik (1942, pp. 264-265). Here, DHP means geometrically distinct Hamiltonian paths, DSHP means geometrically distinct symmetric paths, HP means total (directed) Hamiltonian paths, DHC means geometrically distinct Hamiltonian cycles, and HC means total (directed) Hamiltonian cycles.

size DHP DSHP HP DHC HC
Sloane     A118067   A158074
3×2 0 0 0 0 0
3×3 0 0 0 0 0
3×4 3   16 0 0
3×5 0   0 0 0
3×6 0   0 0 0
3×7 14 2 104 0 0
3×8 104   792 0 0
3×9 146 16 1120 0 0
3×10 773   6096 8 32
3×11 2698 58 21344 0 0
3×12 14350   114496 28 352
3×13 32296   257728 0 0
3×14         3072
3×15       0 0
3×16         30848

Amazingly, the number of Hamiltonian cycles on the 3×n knight graph is given by the 21st-order linear recurrence equation

 a_n=6a_(n-1)+64a_(n-2)-200a_(n-3)-1000a_(n-4)+3016a_(n-5)+3488a_(n-6)-24256a_(n-7)+23776a_(n-8)+104168a_(n-9)-203408a_(n-10)-184704a_(n-11)+443392a_(n-12)+14336a_(n-13)-151296a_(n-14)+145920a_(n-15)-263424a_(n-16)+317440a_(n-17)+36864a_(n-18)-966656a_(n-19)+573440a_(n-20)+131072a_(n-21)

(2)

with corresponding closed-form generating function

G(z) = (P(z))/(Q(z))

(3)

= 32z^5+352z^6+3072z^7+30848z^8+295456z^9+...,

(4)

where

P(z) = 32(2048z^(22)+5120z^(21)-22016z^(20)-3328z^(19)+2784z^(18)+13888z^(17)+15360z^(16)-13392z^(15)-8176z^(14)+9536z^(13)-4z^(12)-3179z^(11)+616z^10+505z^9-116z^8-34z^7+5z^6+z^5)

(5)

Q(z) = -131072z^(21)-573440z^(20)+966656z^(19)-36864z^(18)-317440z^(17)+263424z^(16)-145920z^(15)+151296z^(14)-14336z^(13)-443392z^(12)+184704z^(11)+203408z^(10)-104168z^9-23776z^8+24256z^7-3488z^6-3016z^5+1000z^4+200z^3-64z^2-6z+1.

(6)

This result was obtained independently by D. E. Knuth and N. D. Elkies in April 1994, both using the so-called transfer-matrix method (Stanley 1999, Ch. 4.7; Elkies and Stanley 2003).

The numbers of possible (directed) closed tours on a 4×k board for k=3, 4, ... are 16, 0, 164, 1488, 12756, 62176, 379376, 2426224, ... (OEIS A123935; Kraitchik 1942, p. 263). Like the 3×(2n) case, this sequence is known to be given by a linear recurrence relation with constant coefficients, although it appears this recurrence has not yet been explicitly computed.

The m×n knight graph is Hamilton-laceable iff m>=6n>=6, and at least one of mn is even (Dupuis and Wagon 2014).


REFERENCES

Ahrens, W. Mathematische Unterhaltungen und Spiele. Leipzig, Germany: Teubner, p. 381, 1910.

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 175-186, 1987.

Chartrand, G. "The Knight's Tour." §6.2 in Introductory Graph Theory. New York: Dover, pp. 133-135, 1985.

Conrad, A.; Hindrichs, T.; Morsy, H.; and Wegener, I. "Solution of the Knight's Hamiltonian Path Problem on Chessboards." Discr. Appl. Math. 50, 125-134, 1994.

de Polignac. Comtes Rendus Acad. Sci. Paris, Apr. 1861.

de Polignac. Bull. Soc. Math. de France 9, 17-24, 1881.

Dudeney, H. E. Amusements in Mathematics. New York: Dover, pp. 96 and 102-103, 1970.

Dupuis, M. and Wagon, S. "Laceable Knights." To appear in Ars Math Contemp.Elkies, N. D. and Stanley, R. P. "The Mathematical Knight." Math. Intell. 25, No. 1, 22-34, Winter 2003.

Euler, L. "Solution d'une question curieuse qui ne paroit soumise a aucune analyse." Mémoires de l'Académie Royale des Sciences et Belles Lettres de Berlin, Année 1759 15, 310-337, 1766.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.