تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
LCF Notation
المؤلف:
Coxeter, H. S. M.; FZero-Symmetric Graphs: Trivalent Graphical Regular Representations of Groups. New York: Academic Press, 1981.rucht, R.; and Powers, D. L
المصدر:
Zero-Symmetric Graphs: Trivalent Graphical Regular Representations of Groups. New York: Academic Press, 1981.
الجزء والصفحة:
...
26-4-2022
2098
LCF Notation
LCF notation is a concise and convenient notation devised by Joshua Lederberg (winner of the 1958 Nobel Prize in Physiology and Medicine) for the representation of cubic Hamiltonian graphs (Lederberg 1965). The notation was subsequently modified by Frucht (1976) and Coxeter et al. (1981), and hence was dubbed "LCF notation" by Frucht (1976). Pegg (2003) used the notation to describe many of the cubic symmetric graphs. The notation only applies to Hamiltonian graphs, since it achieves its symmetry and conciseness by placing a Hamiltonian cycle in a circular embedding and then connecting specified pairs of nodes with edges.
For example, the notation describes the cubical graph illustrated above. To see how this works, begin with the cycle graph
. Beginning with a vertex
, count three vertices clockwise (
) to
and connect it to
with an edge. Now advance to
, count three vertices counterclockwise (
) to vertex
, and connect
and
with an edge. This is one iteration of the process
, which is then repeated three more times (for a total of four, corresponding to the exponent of
) until the original vertex is reached, thus giving the graph represented by
. Note that the graph is actually traversed two times in this process since each edge is constructed twice, once in each direction.
The LCF notation for a given graph is not unique, since it may be shifted any number of positions to the left or right, or may be reversed (with a corresponding sign change of the entries to correspond to the fact that the numbering of the outer cycle must be done in the opposite order as well). In addition, for a graph with more than one Hamiltonian cycle, different choices are possible for which cycle is mapped to the outer cycle.
As a result, depending on the structure of Hamiltonian cycles, a single graph may have several different LCF notations with different exponents corresponding to different embeddings. Furthermore, inequivalent notations with the same exponent may also exist. For example, the cubic vertex-transitive graph on 18 nodes illustrated above has the four LCF notations ,
,
,
, and [
,
, 5, 9,
, 5, 9,
, 5, 7,
, 7, 9,
, 5, 9,
, 5].
The following table gives the simplest (i.e., shortest) LCF notations for named cubic Hamiltonian graphs on 20 or fewer nodes. Here, denotes a cubic symmetric graph on
nodes.
vertices | graph | "minimal" LCF notation |
4 | tetrahedral graph | |
6 | utility graph | |
6 | 3-prism graph | |
8 | cubical graph | |
8 | 3-matchstick graph | |
8 | 4-Möbius ladder | |
10 | 5-Möbius ladder | |
10 | 5-prism graph | |
12 | Franklin graph | |
12 | Frucht graph | |
12 | generalized Petersen graph (6,2) | |
12 | 6-Möbius ladder | |
12 | 6-prism graph | |
12 | truncated tetrahedral graph | |
14 | generalized Petersen graph (7, 2) | |
14 | Heawood graph | |
14 | 7-Möbius ladder | |
14 | 7-prism graph | |
16 | cubic vertex-transitive graph Ct19 | |
16 | Möbius-Kantor graph | |
16 | 8-Möbius ladder | |
16 | 8-prism graph | |
18 | Pappus graph | |
18 | cubic vertex-transitive graph Ct20 | |
18 | cubic vertex-transitive graph Ct23 | |
18 | generalized Petersen graph (9,2) | |
18 | generalized Petersen graph (9,3) | |
18 | 9-Möbius ladder | |
18 | 9-prism graph | |
20 | cubic vertex-transitive graph Ct25 | |
20 | cubic vertex-transitive graph Ct28 | |
20 | cubic vertex-transitive graph Ct29 | |
20 | Desargues graph | |
20 | dodecahedral graph | |
20 | generalized Petersen graph (10, 4) | |
20 | largest cubic nonplanar graph with diameter 3 | |
20 | 10-Möbius ladder | |
20 | 10-prism graph |
REFERENCES
Coxeter, H. S. M.; Frucht, R.; and Powers, D. L. Zero-Symmetric Graphs: Trivalent Graphical Regular Representations of Groups. New York: Academic Press, 1981.
Frucht, R. "A Canonical Representation of Trivalent Hamiltonian Graphs." J. Graph Th. 1, 45-60, 1976.
Grünbaum, B. Convex Polytopes. New York: Wiley, pp. 362-364, 1967.
Lederberg, J. "DENDRAL-64: A System for Computer Construction, Enumeration and Notation of Organic Molecules as Tree Structures and Cyclic Graphs. Part II. Topology of Cyclic Graphs." Interim Report to the National Aeronautics and Space Administration. Grant NsG 81-60. December 15, 1965. http://profiles.nlm.nih.gov/BB/A/B/I/U/_/bbabiu.pdf.
Pegg, E. Jr. "Math Games: Cubic Symmetric Graphs." Dec. 30, 2003. http://www.maa.org/editorial/mathgames/mathgames_12_29_03.html.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
