

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Detour Polynomial
المؤلف:
Nikolić, S.; Trinajstić, N.; and Mihalić, A
المصدر:
"The Detour Matrix and the Detour Index." Ch. 6 in Topological Indices and Related Descriptors in QSAR and QSPR (Ed. J. Devillers A. T. and Balaban). Amsterdam, Netherlands: Gordon and Breach,
الجزء والصفحة:
pp. 279-30
17-4-2022
1675
Detour Polynomial
The detour polynomial of a graph is the characteristic polynomial of the detour matrix of
.
Precomputed detour polynomials for many named graphs are available in the Wolfram Language as GraphData[graph, "DetourPolynomial"].
Since a Hamilton-connected graph with vertex count has all off-diagonal matrix elements equal to
, the detour polynomial of such a graph is given by
.
The following table summarizes detour polynomials for some common classes of graphs. Here, is a Chebyshev polynomial of the first kind and
is a Chebyshev polynomial of the second kind.
| graph | detour polynomial |
| Andrásfai graph | |
| antiprism graph | |
| barbell graph | |
| book graph |
|
| cocktail party graph |
|
| complete bipartite graph |
|
| complete graph |
|
| complete tripartite graph |
|
| crossed prism graph | |
| crown graph for |
|
| gear graph | |
| halved cube graph |
|
| helm graph | |
| hypercube graph |
|
| Keller graph |
|
| king graph |
|
| Möbius ladder |
|
| Mycielski graph |
|
| odd graph |
|
| path graph |
|
| prism graph |
|
| Sierpiński tetrahedron graph | |
| star graph |
|
| wheel graph |
The following table summarizes the recurrence relations for detour polynomials for some simple classes of graphs.
| graph | order | recurrence |
| path graph |
5 |
REFERENCES
Nikolić, S.; Trinajstić, N.; and Mihalić, A. "The Detour Matrix and the Detour Index." Ch. 6 in Topological Indices and Related Descriptors in QSAR and QSPR (Ed. J. Devillers A. T. and Balaban). Amsterdam, Netherlands: Gordon and Breach, pp. 279-306, 2000.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)