

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Adjacency Matrix
المؤلف:
Chartrand, G
المصدر:
Introductory Graph Theory. New York: Dover
الجزء والصفحة:
...
14-4-2022
3546
Adjacency Matrix
The adjacency matrix, sometimes also called the connection matrix, of a simple labeled graph is a matrix with rows and columns labeled by graph vertices, with a 1 or 0 in position according to whether
and
are adjacent or not. For a simple graph with no self-loops, the adjacency matrix must have 0s on the diagonal. For an undirected graph, the adjacency matrix is symmetric.
The illustration above shows adjacency matrices for particular labelings of the claw graph, cycle graph , and complete graph
.
Since the labels of a graph may be permuted without changing the underlying graph being represented, there are in general multiple possible adjacency matrices for a given graph. In particular, the number of distinct adjacency matrices for a graph
with vertex count
and automorphism group order
is given by
where is the number or permutations of vertex labels. The illustration above shows the
possible adjacency matrices of the cycle graph
.
The adjacency matrix of a graph can be computed in the Wolfram Language using AdjacencyMatrix[g], with the result being returned as a sparse array.
A different version of the adjacency is sometimes defined in which diagonal elements are and
if
and
are adjacent and
otherwise (e.g., Goethals and Seidel 1970).
REFERENCES
Chartrand, G. Introductory Graph Theory. New York: Dover, p. 218, 1985.
Devillers, J. and A. T. Balaban (Eds.). Topological Indices and Related Descriptors in QSAR and QSPR. Amsterdam, Netherlands: Gordon and Breach, pp. 69-73, 2000.
Goethals, J.-M. and Seidel, J. J. "Strongly Regular Graphs Derived from Combinatorial Designs." Can. J. Math. 22, 597-514, 1970.
Skiena, S. "Adjacency Matrices." §3.1.1 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 81-85, 1990.
West, D. B. Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 6-9, 2000.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)