تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Braced Polygon
المؤلف:
Frederickson, G. N
المصدر:
"Turnabout 2: Bracing Regular Polygons." Hinged Dissections: Swinging & Twisting. New York: Cambridge University Press
الجزء والصفحة:
...
5-4-2022
3220
Braced Polygon
The braced square problem asks, given a hinged square composed of four equal rods (indicated by the red lines above), how many more hinged rods must be added in the same plane (with no two rods crossing) so that the original square is rigid in the plane? The best solution known (left figure above), uses a total of 27 rods (including four for the square), where ,
, and
are collinear (Gardner 1964; Gardner 1984; Wells 1991; Fredrickson 2002, p. 70, Fig. T4).
Configurations corresponding to rigid graphs with equal-length edges (which can without loss of generality be taken to have unit lengths) and continaing a regular polygon as a subgraph are known as braced (regular) polygons. While the original variant of the problem assumined non-overlapping rods and hence corresponds to graph embedings that are rigid and matchstick graphs, loosening the condition to allow overlapping edges gives solutions corresponding to rigid unit-distance graphs.
For example, if rods are allowed to cross to form a braced square, the best known solution, due to A. Khodulyov and illustrated above, requires 19 rods (Friedman 2006).
In 1963, T. H. O'Beirne found matchstick solutions for the pentagon using 69 rods, for the octagon using 113 rods, and for the dodecagon using 57 rods (Fredrickson 2002, p. 70). O'Beirne's pentagon bracing is shown above (Fredrickson 2002, p. 71, Fig. T6).
It is possible to brace a square without using triangles. The 21-edge, 12-node, unit-distance graph illustrated above and constructed via vertex-deletion from a certain 29-node symmetric braced graph (Pegg 2018b) is triangle-free and braces two squares (E. Pegg, pers. comm., Jan. 3, 2021). Furthermore, any rigid framework (and hence all regular polygons) can be converted to a triangle-free equivalent by chaining copies of the 12 12-vertex triangle-free braced square shown above along the two collinear edges gives (P. Taxel, Jan. 3, 2021).
The following table (updated from Friedman 2006, and with the 36-edge Mireles graph, which is not rigid, removed) gives smallest known solutions as of Oct. 2021, both with and without overlapping rods. Many of these are implemented in the Wolfram Language as GraphData[{" src="https://mathworld.wolfram.com/images/equations/BracedPolygon/Inline4.svg" style="height:22px; width:6px" />"BracedSquare",
{" src="https://mathworld.wolfram.com/images/equations/BracedPolygon/Inline5.svg" style="height:22px; width:6px" />27,1
}" src="https://mathworld.wolfram.com/images/equations/BracedPolygon/Inline6.svg" style="height:22px; width:6px" />
}" src="https://mathworld.wolfram.com/images/equations/BracedPolygon/Inline7.svg" style="height:22px; width:6px" />], GraphData[
{" src="https://mathworld.wolfram.com/images/equations/BracedPolygon/Inline8.svg" style="height:22px; width:6px" />"BracedPentagon",
{" src="https://mathworld.wolfram.com/images/equations/BracedPolygon/Inline9.svg" style="height:22px; width:6px" />69,1
}" src="https://mathworld.wolfram.com/images/equations/BracedPolygon/Inline10.svg" style="height:22px; width:6px" />
}" src="https://mathworld.wolfram.com/images/equations/BracedPolygon/Inline11.svg" style="height:22px; width:6px" />], etc.
Khodulyov's solutions for the heptagon and 11-gon are just instances of an "equal angles" method using Peaucellier-Lipkin linkages that works for all -gons with
(with the exceptions of
, 9, 10, and 12, which produce vertex-vertex degenerate embeddings). The result is asymptotically optimal and requires
rods (J. Tan, pers. comm., Oct. 26, 2021).
edges | matchstick | edges | unit-distance | |
3 | 3 | triangle graph |
3 | |
4 | 27 | seven discoverers (Gardner 1964) | 19 | Andrei Khodulyov (Friedman 2006) |
5 | 69 | T. H. O'Beirne in 1963 (Fredrickson 2002, p. 70) | 31 | Andrei Khodulyov (Friedman 2006) |
6 | 11 | Friedman (2006; trivial) | 11 | |
7 | 35 | Ed Pegg, Jr., Parcly Taxel, W. R. Somsky (Dec. 2020) | ||
8 | 113 | T. H. O'Beirne in 1963 (Fredrickson 2002, p. 70) | 31 | Andrei Khodulyov (Friedman 2006) |
9 | 51 | Andrei Khodulyov (Friedman 2006) | ||
10 | 55 | Andrei Khodulyov (Friedman 2006) | ||
11 | 79 | J. Tan (Parcly Taxel 2021) | ||
12 | 57 | T. H. O'Beirne in 1963 (Fredrickson 2002, p. 70) | 49 | Andrei Khodulyov (Friedman 2006) |
13 | 151 | J. Tan (Oct. 2021) | ||
14 | 91 | W. Somsky (Dec. 2020) | ||
15 | 231 | Andrei Khodulyov (J. Tan, Oct. 2021) | ||
16 | 109 | J. Tan (Oct. 2021) | ||
17 | 269 | Andrei Khodulyov (J. Tan, Oct. 2021) | ||
18 | 117 | J. Tan (Oct. 2021) |
REFERENCES
Frederickson, G. N. "Turnabout 2: Bracing Regular Polygons." Hinged Dissections: Swinging & Twisting. New York: Cambridge University Press, pp. 70-71, 2002.
Friedman, E. "Problem of the Month (January 2000)." https://erich-friedman.github.io/mathmagic/0100.html. Updated Oct. 1, 2006.
Gardner, M. "Mathematical Games: How to Use the Odd-Even Check for Tricks and Problem Solving." Sci. Amer. 209, 140-148, Dec. 1963.
Gardner, M. "Mathematical Games: The Hypnotic Fascination of Sliding-Block Puzzles." Sci. Amer. 210, 122-130, Feb. 1964.
Gardner, M. "The Rigid Square." §6.1 in The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, pp. 48-49 and 54-55, 1984.
Maehara, H. "Distances in a Rigid Unit-Distance Graph in the Plane." Disc. Appl. Math. 31, 193-200, 1991.
Pegg, E. Jr. "Mathematics Stack Exchange: 4-Chromatic Unit Distance Graph with No 4-Cycles." Jan. 26, 2018a.
https://math.stackexchange.com/questions/2622496/4-chromatic-unit-distance-graph-with-no-4-cycles.Pegg, E. Jr. "Mathematics Stack Exchange: Doubling the Cube with Unit Sticks." Mar. 11, 2018b.
https://math.stackexchange.com/questions/2675079/doubling-the-cube-with-unit-sticks/.Pegg, E. Jr. "Mathematics Stack Exchange: Is This Braced Heptagon a Rigid Graph?." Dec. 19, 2020.
https://math.stackexchange.com/questions/3954719/is-this-braced-heptagon-a-rigid-graph/.Somsky, W. R. "A New Braced Heptagon." Unpublished manuscript. Dec. 2020.Taxel, P. "Mathematics Stack Exchange: Bracing a Polygon Without Triangles." Edited Jan. 3, 2021.
https://math.stackexchange.com/questions/3958870/bracing-a-polygon-without-triangles.Taxel, P. "On the Representation of in the Integral Basis of
." Oct. 15, 2021.
https://math.stackexchange.com/questions/4277731/on-the-representation-of-sqrt-pm-p-in-the-integral-basis-of-mathbb-q-zet.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 19, 1991.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
