

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Toroidal Crossing Number
المؤلف:
Altshuler, A
المصدر:
"Construction and Enumeration of Regular Maps on the Torus." Disc. Math. 4
الجزء والصفحة:
...
3-4-2022
2434
Toroidal Crossing Number
The toroidal crossing number of a graph
is the minimum number of crossings with which
can be drawn on a torus.
A planar graph has toroidal crossing number 0, and a nonplanar graph with toroidal crossing number 0 is called a toroidal graph. A nonplanar graph with toroidal crossing number 0 has graph genus 1 since it can be embedded on a torus (but not in the plane) with no crossings.
A graph having graph crossing number or rectilinear crossing number less than 2 has toroidal crossing number 0. More generally, a graph that becomes planar after the removal of a single edge (in other words, a graph with graph skewness
) also has toroidal crossing number 0. However, there exist graphs with
all of whose edge-removed subgraphs are nonplanar, so this condition is sufficient bit not necessary.
If a graph on
edges has toroidal crossing number
, then
(Pach and Tóth 2005), where
denotes the binomial coefficient. Furthermore, if
is a graph on
vertices with maximum vertex degree
which has toroidal crossing number
, then
|
(1) |
where is a positive constant (Pach and Tóth 2005).
The toroidal crossing numbers for a complete graph for
, 2, ... are 0, 0, 0, 0, 0, 0, 0, 4, 9, 23, 42, 70, 105, 154, 226, 326, ... (OEIS A014543).
The crossing number of on the torus is given by
|
(2) |
(Guy and Jenkyns 1969, Ho 2005). The first values for , 2, ... are therefore 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, ... (OEIS A008724).
The crossing number of on the torus is given by
|
(3) |
(Ho 2009). The first values for , 2, ... are therefore 0, 0, 0, 0, 2, 4, 6, 8, 12, 16, 20, 24, 30, 36, ... (OEIS A182568). Interestingly, the same result holds for
,
,
, and
.
The toroidal crossing numbers for a complete bipartite graph are summarized in the following table.
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | |
| 3 | 0 | 0 | 0 | 0 | ||
| 4 | 0 | 2 | 4 | |||
| 5 | 5 | 8 | ||||
| 6 | 12 |
REFERENCES
Altshuler, A. "Construction and Enumeration of Regular Maps on the Torus." Disc. Math. 4, 201-217, 1973.
Gardner, M. "Crossing Numbers." Ch. 11 in Knotted Doughnuts and Other Mathematical Entertainments. New York: W. H. Freeman, pp. 133-144, 1986.
Guy, R. K. and Jenkyns, T. "The Toroidal Crossing Number of ." J. Combin. Th. 6, 235-250, 1969.
Guy, R. K.; Jenkyns, T.; and Schaer, J. "Toroidal Crossing Number of the Complete Graph." J. Combin. Th. 4, 376-390, 1968.
Harary, F. and Palmer, E. M. "A Survey of Graph Enumeration Problems." In A Survey of Combinatorial Theory (Ed. J. N. Srivastava). Amsterdam: North-Holland, pp. 259-275, 1973.
Ho, P. T. "The Crossing Number of on the Real Projective Plane." Disc. Math. 304, 23-33, 2005.
Ho, P. T. "The Toroidal Crossing Number of ." Disc. Math. 309, 3238-3248, 2009.
Pach, J. and Tóth, G. "Thirteen Problems on Crossing Numbers." Geocombin. 9, 195-207, 2000.
Pach, J. and Tóth, G. "Crossing Number of Toroidal Graphs." In International Symposium on Graph Drawing (Ed. P. Healy and N. S. Nikolov). Berlin, Heidelberg: Springer-Verlag: pp. 334-342, 2005.
Riskin, A. "On the Nonembeddability and Crossing Numbers of Some Toroidal Graphs on the Klein Bottle." Disc. Math. 234, 77-88, 2001.
Sloane, N. J. A. Sequences A008724, A014543, and A182568 in "The On-Line Encyclopedia of Integer Sequences."Thomassen, C. "Tilings of the Torus and the Klein Bottle and Vertex-Transitive Graphs on a Fixed Surface." Trans. Amer. Math. Soc. 323, 605-635, 1991.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)