المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر


Grünbaum Graphs  
  
1756   05:40 مساءً   date: 28-3-2022
Author : Bondy, J. A. and Murty, U. S. R.
Book or Source : Graph Theory with Applications. New York: North Holland,
Page and Part : ...


Read More
Date: 28-7-2016 1230
Date: 19-5-2022 1297
Date: 28-7-2016 1493

Grünbaum Graphs

 

GruenbaumGraph

Grünbaum conjectured that for every m>1n>2, there exists an m-regular, m-chromatic graph of girth at least n. This result is trivial for n=2 and m=2,3, but only a small number of other such graphs are known, including the Grünbaum graph, illustrated above, Brinkmann graph, and Chvátal graph.

The Grünbaum graph can be constructed from the dodecahedral graph by adding an additional ring of five vertices around the perimeter and cyclically connecting each new vertex to three others as shown above (left figure). A more symmetrical embedding is shown in the center figure above, and an LCF notation-based embedding is shown in the right figure. This graph is implemented in the Wolfram Language as GraphData["GruenbaumGraph25"].

The Grünbaum graph has 25 vertices and 50 edges. It is a quartic graph with chromatic number 4, and therefore has m=4. It has girth n=5.

It has diameter 4, graph radius 3, edge connectivity 4, and vertex connectivity 4. It is Hamiltonian and nonplanar.

GruenbaumGraphs

Two other graphs associated with Grünbaum are the graphs on 121 and 124 vertices illustrated above (Grünbaum 1970a, Zamfirescu 1976). They are implemented in the Wolfram Language as GraphData["GruenbaumGraph121"] and GraphData["GruenbaumGraph124"]. The 124-vertex graph is nonhamiltonian and is therefore a counterexample to the Tait's Hamiltonian graph conjecture.


REFERENCES

Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, pp. 241-242, 1976.

Grünbaum, B. "Polytopes, Graphs, and Complexes." Bull. Amer. Math. Soc. 76, 1131-1201, 1970a.

Grünbaum, B. "A Problem in Graph Coloring." Amer. Math. Monthly 77, 1088-1092, 1970b.Zamfirescu, T. "On Longest Paths and Circuits in Graphs." Math. Scand. 38, 211-239, 1976.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.