Read More
Date: 19-4-2022
1833
Date: 5-4-2022
2573
Date: 22-7-2016
2447
|
A directed graph in which it is possible to reach any node starting from any other node by traversing edges in some direction (i.e., not necessarily in the direction they point). The nodes in a weakly connected digraph therefore must all have either outdegree or indegree of at least 1. The numbers of nonisomorphic simple weakly connected digraphs on , 2, ... nodes are 1, 2, 13, 199, 9364, ... (OEIS A003085).
Harary, F. and Palmer, E. M. Graphical Enumeration. New York: Academic Press, p. 218, 1973.
Skiena, S. "Strong and Weak Connectivity." §5.1.2 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 172-174, 1990.
Sloane, N. J. A. Sequence A003085/M2067 in "The On-Line Encyclopedia of Integer Sequences."
|
|
5 علامات تحذيرية قد تدل على "مشكل خطير" في الكبد
|
|
|
|
|
لحماية التراث الوطني.. العتبة العباسية تعلن عن ترميم أكثر من 200 وثيقة خلال عام 2024
|
|
|