تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Perfect Graph
المؤلف:
Berge, C
المصدر:
Graphs and Hypergraphs. New York: Elsevier, 1973.
الجزء والصفحة:
...
6-3-2022
2635
Perfect Graph
A perfect graph is a graph such that for every induced subgraph of
, the clique number equals the chromatic number, i.e.,
. A graph that is not a perfect graph is called an imperfect graph (Godsil and Royle 2001, p. 142).
A graph for which (without any requirement that this condition also hold on induced subgraphs) is called a weakly perfect graph. All perfect graphs are therefore weakly perfect by definition.
A graph is strongly perfect if every induced subgraph has an independent set meeting all maximal cliques of
. While all strongly perfect graphs are perfect, the converse is not necessarily true. Since every
-free graph (where
is a path graph) is strongly perfect (Ravindra 1999) and every strongly perfect graph is perfect, if a graph is
-free, it is perfect.
Perfect graphs were introduced by Berge (1973) motivated in part by determining the Shannon capacity of graphs (Bohman 2003). Note that rather confusingly, perfect graphs are distinct from the class of graphs with perfect matchings.
Every bipartite graph is perfect (Gross and Yellen 2006, p. 385). The perfect graph theorem states that the graph complement of a perfect graph is itself perfect. A graph is therefore perfect iff its complement is perfect. However, determining if a general graph is perfect has been shown to be a polynomial time algorithm (Chudnovsky et al. 2005).
A graph is perfect iff neither the graph nor its graph complement
has a chordless cycle of odd order. A graph with no 5-cycle and no larger odd chordless cycle is therefore automatically perfect. This is true since the presence of a chordless 5-cycle in
corresponds to a 5-cycle in
and
can have no chordless 7-cycle or larger since the diagonals of these cycles in
would contain a 5-cycle in
.
A graph can be tested to see if it is perfect using PerfectQ[g] in the Wolfram Language package Combinatorica` .
The numbers of perfect graphs on , 2, ... nodes are 1, 2, 4, 11, 33, 148, 906, 8887, ... (OEIS A052431).
The numbers of perfect connected graphs on , 2, ... nodes are 1, 1, 2, 6, 20, 105, 724, ... (OEIS A052433).
Classes of graphs that are perfect include:
1. bipartite graphs
2. chordal graphs
3. line graphs of bipartite graphs,
4. graph complements of bipartite graphs
5. graph complements of line graphs of bipartite graphs.
Families of perfect graphs (excluding bipartite families) include
1. barbell graphs
2. bishop graphs
3. caveman graphs
4. complete graphs
5. empty graphs
6. fan graphs
7. Hanoi graphs
8. helm graphs for
or
even
9. rook graphs
10. lollipop graphs
11. king graphs with
12. queen graphs ,
and
13. sun graphs
14. Turán graphs
15. triangular snake graphs
16. windmill graphs.
REFERENCES
Berge, C. Graphs and Hypergraphs. New York: Elsevier, 1973.
Bohman, T. and Holzman, R. "A Nontrivial Lower Bound on the Shannon Capacities of the Complements of Odd Cycles." IEEE Trans. Inform. Th. 49, 721-722, 2003.
Chudnovsky, M.; Cornuéjols, G.; Liu, X.; Seymour, P.; and Vušković, K. "Recognizing Berge Graphs." Combinatorica 25, 143-186, 2005.
Godsil, C. and Royle, G. Algebraic Graph Theory. New York: Springer-Verlag, pp. 142-143, 2001.
Golumbic, M. C. Algorithmic Graph Theory and Perfect Graphs. New York: Academic Press, 1980.
Gross, J. T. and Yellen, J. Graph Theory and Its Applications, 2nd ed. Boca Raton, FL: CRC Press, 2006.
Ravindra, G. "Some Classes of Strongly Perfect Graphs." Disc. Math. 206, 197-203, 1999.
Skiena, S. "Perfect Graphs." §5.6.4 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 219, 1990.
Sloane, N. J. A. Sequences A052431 and A052433 in "The On-Line Encyclopedia of Integer Sequences."West, D. B. "A Hint of Perfect Graphs" and "Perfect Graphs." §8.1 in Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 226-228 and 319-348, 2000.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
