Grammar					
				 
				
					
						
						 المؤلف:  
						Aho, A. V. and Ullman J. D					
					
						
						 المصدر:  
						Theory of Parsing, Translation and Compiling, Vol. 1. Englewood Cliffs, NJ: Prentice Hall, 1972.					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						24-1-2022
					
					
						
						1159					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Grammar
A grammar defining formal language 
 is a quadruple 
, where 
 is a finite set of nonterminals, 
 is a finite set of terminal symbols, 
 is a finite set of productions, and 
 is an element of 
.
The set 
 of terminal symbols is 
's alphabet. Nonterminals are symbols representing language constructs. The sets 
 and 
 should not intersect. 
 is called the start symbol. Productions are rules of the form: 
, where both 
 and 
 are strings of terminals and nonterminals, 
 contains at least one nonterminal.
Sentential forms for grammar 
 are defined by the following rules: 
 is a sentential form and if 
 is a sentential form and production 
 belongs to 
, then 
 is a sentential form as well.
 is the set of all strings which are sentential forms consisting entirely of terminal symbols. For a language defined by a grammar, recognition whether a given string (expression) belongs to that language is, in general, a non-trivial task. All languages defined by grammars are recursively enumerable sets.
1. A grammar 
 is called right linear if all its productions have the form 
 or 
, where 
 and 
 is a string of terminal symbols.
2. A grammar 
 is called context-free if all its productions have the form 
, where 
 and 
 is a string of terminal and nonterminal symbols.
3. A grammar 
 is called context-sensitive if all its productions have the form 
, where both 
 and 
 are strings of terminal and nonterminal symbols and the length of 
 is not more than the length of 
.
4. A grammar 
 is called unrestricted if it does not belong to categories 1 through 3.
This hierarchy of grammars was introduced by N. Chomsky. The set of languages defined by grammars of every category is a proper superset of that for the previous category. The languages defined by grammars of categories 1 through 3 are recursive sets. A language can be defined by a grammar of category 1 iff it is defined by a regular expression.
REFERENCES
Aho, A. V. and Ullman J. D. Theory of Parsing, Translation and Compiling, Vol. 1. Englewood Cliffs, NJ: Prentice Hall, 1972.
Aho, A. V. and Ullman J. D. Theory of Parsing, Translation and Compiling, Vol. 2. Englewood Cliffs, NJ: Prentice Hall, 1972.
				
				
					
					
					 الاكثر قراءة في  المنطق					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة