Conjunction
المؤلف:
Comtet, L.
المصدر:
Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel
الجزء والصفحة:
...
11-1-2022
1038
Conjunction
A product of ANDs, denoted
The conjunctions of a Boolean algebra
of subsets of cardinality
are the
functions
where
{1,2,...,p}" src="https://mathworld.wolfram.com/images/equations/Conjunction/Inline4.gif" style="height:16px; width:90px" />. For example, the 8 conjunctions of
{A_1,A_2,A_3}" src="https://mathworld.wolfram.com/images/equations/Conjunction/Inline5.gif" style="height:16px; width:94px" /> are
,
,
,
,
,
,
, and
(Comtet 1974, p. 186).
A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30).
The Wolfram Language command Conjunction[expr,
{" src="https://mathworld.wolfram.com/images/equations/Conjunction/Inline14.gif" style="height:16px; width:4px" />a1, a2, ...
}" src="https://mathworld.wolfram.com/images/equations/Conjunction/Inline15.gif" style="height:16px; width:4px" />] gives the conjunction of expr over all choices of the Boolean variables
.
REFERENCES:
Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, p. 186, 1974.
Mendelson, E. Introduction to Mathematical Logic, 4th ed. London: Chapman & Hall, 1997.
الاكثر قراءة في نظرية المجموعات
اخر الاخبار
اخبار العتبة العباسية المقدسة