Read More
Date: 16-9-2021
![]()
Date: 22-9-2021
![]()
Date: 25-9-2021
![]() |
With , the logistic map becomes
![]() |
(1) |
which is equivalent to the tent map with . The first 50 iterations of this map are illustrated above for initial values
and 0.71.
The solution can be written in the form
![]() |
(2) |
with
![]() |
(3) |
and its inverse function (Wolfram 2002, p. 1098). Explicitly, this then gives the three equivalent forms
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
To investigate the equation's properties, let
![]() |
(7) |
![]() |
(8) |
![]() |
(9) |
so
![]() |
(10) |
Manipulating (7) gives
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
so
![]() |
(13) |
![]() |
(14) |
But . Taking
, then
and
![]() |
(15) |
For ,
and
![]() |
(16) |
Combining gives
![]() |
(17) |
which can be written
![]() |
(18) |
which is just the tent map with , whose natural invariant in
is
![]() |
(19) |
Transforming back to therefore gives
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
This can also be derived from
![]() |
(23) |
where is the delta function.
REFERENCES:
MathPages. "Closed Forms for the Logistic Map." http://www.mathpages.com/home/kmath188.htm.
Jaffe, S. "The Logistic Map: Computable Chaos." http://library.wolfram.com/infocenter/MathSource/579/.
Whittaker, J. V. "An Analytical Description of Some Simple Cases of Chaotic Behavior." Amer. Math. Monthly 98, 489-504, 1991.
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 1098, 2002.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|