

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Biggest Little Polygon
المؤلف:
Audet, C
المصدر:
Optimisation globale structurée: propriétés, équivalences et résolution." Thèse de Doctorat. Montréal, Canada: École Polytechnique de Montréal, 1997. http://www.gerad.ca/Charles.Audet.
الجزء والصفحة:
...
15-12-2021
1406
Biggest Little Polygon
The biggest little polygon with
sides is the convex plane
-gon of unit polygon diameter having largest possible area.

Reinhardt (1922) showed that for
odd, the regular polygon on
sides is the biggest little
-gon. For
, the square with diagonal 1 has maximum area, but an infinite number of other 4-gons are equally large (Audet et al. 2002). The
case was solved by Graham (1975) and is known as Graham's biggest little hexagon, and the
case was solved by Audet et al. (2002). The following table summarizes these results, showing the percentage that the given polygon is larger than the regular
-gon.
![]() |
area | % larger than regular -gon |
reference |
| 6 | 0.674981 | 3.92% | Graham (1975) |
| 8 | 0.726867 | 2.79% | Audet et al. (2002) |
The biggest little polygon graphs on
and 8 nodes are implemented in the Wolfram Language as GraphData[{" src="https://mathworld.wolfram.com/images/equations/BiggestLittlePolygon/Inline13.gif" style="height:15px; width:5px" />"BiggestLittlePolygon", n
}" src="https://mathworld.wolfram.com/images/equations/BiggestLittlePolygon/Inline14.gif" style="height:15px; width:5px" />].
REFERENCES:
Audet, C. "Optimisation globale structurée: propriétés, équivalences et résolution." Thèse de Doctorat. Montréal, Canada: École Polytechnique de Montréal, 1997. http://www.gerad.ca/Charles.Audet.
Audet, C.; Hansen, P.; Messine, F.; and Xiong, J. "The Largest Small Octagon." J. Combin. Th. Ser. A 98, 46-59, 2002.
Graham, R. L. "The Largest Small Hexagon." J. Combin. Th. Ser. A 18, 165-170, 1975.
Reinhardt, K. "Extremale Polygone gegebenen Durchmessers." Jahresber. Deutsch. Math. Verein 31, 251-270, 1922.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية


-gon
قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)