المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

Symmetric Polynomial
23-2-2019
من هم (الأسباط)
20-10-2014
المسند إليه
26-03-2015
خدمة وعناية محصول الرامي
2024-04-09
عموم القرعة لغير باب التنازع
2024-08-03
إن أكرمكم عند الله أتقاكم
1-7-2017

Generalized Minimal Residual Method  
  
1236   04:28 مساءً   date: 1-12-2021
Author : Arnoldi, W
Book or Source : "The Principle of Minimized Iterations in the Solution of the Matrix Eigenvalue Problem." Quart. Appl. Math. 9
Page and Part : ...


Read More
Date: 12-10-2021 898
Date: 16-12-2021 1442
Date: 10-11-2021 1208

Generalized Minimal Residual Method

The generalized minimal residual (GMRES) method (Saad and Schultz 1986) is an extension of the minimal residual method (MINRES), which is only applicable to symmetric systems, to unsymmetric systems. Like MINRES, it generates a sequence of orthogonal vectors, but in the absence of symmetry this can no longer be done with short recurrences; instead, all previously computed vectors in the orthogonal sequence have to be retained. For this reason, "restarted" versions of the method are used.

In the conjugate gradient method, the residuals form an orthogonal basis for the space

 span{r^((0)),Ar^((0)),A^2r^((0))}.

In GMRES, this basis is formed explicitly:

The reader may recognize this as a modified Gram-Schmidt orthonormalization. Applied to the Krylov sequence {A^kr^((0))} this orthogonalization is called the "Arnoldi method" (Arnoldi 1951). The inner product coefficients (w^((i)),v^((k))) and |w^((i))| are stored in an upper Hessenberg matrix.

The GMRES iterates are constructed as

 x^((i))=x^((0))+y_1v^((1))+...+y_iv^((i)),

where the coefficients y_k have been chosen to minimize the residual norm |b-Ax^((i))|. The GMRES algorithm has the property that this residual norm can be computed without the iterate having been formed. Thus, the expensive action of forming the iterate can be postponed until the residual norm is deemed small enough.

In this scheme, UPDATE(x^~,i) replaces the following computations:

The generalized minimal residual method is designed to solve nonsymmetric linear systems (Saad and Schultz 1986) The most popular form of GMRES is based on a modified Gram-Schmidt orthonormalization procedure and uses restarts to control storage requirements.

If no restarts are used, GMRES (like any orthogonalizing Krylov subspace method) will converge in no more than n steps (assuming exact arithmetic). Of course this is of no practical value when n is large; moreover, the storage and computational requirements in the absence of restarts are prohibitive. Indeed, the crucial element for successful application of GMRES(m) revolves around the decision of when to restart; that is, the choice of m. Unfortunately, there exist examples for which the method stagnates and convergence takes place only at the nth step. For such systems, any choice of m less than n fails to converge.

Saad and Schultz (1986) have proven several useful results. In particular, they show that if the coefficient matrix A is real and nearly positive definite, then a "reasonable" value for m may be selected. Implications of the choice of m are discussed below.

A common implementation of GMRES is suggested by Saad and Schultz (1986) and relies on using modified Gram-Schmidt orthonormalization. Householder transformations, which are relatively costly but stable, have also been proposed. The Householder approach results in a three-fold increase in work associated with inner products and vector updates (not with matrix vector products); however, convergence may be better, especially for ill-conditioned systems (Walker 1988). From the point of view of parallelism, Gram-Schmidt orthonormalization may be preferred, giving up some stability for better parallelization properties (Demmel et al. 1993). Here we adopt the modified Gram-Schmidt approach.

The major drawback to GMRES is that the amount of work and storage required per iteration rises linearly with the iteration count. Unless one is fortunate enough to obtain extremely fast convergence, the cost will rapidly become prohibitive. The usual way to overcome this limitation is by restarting the iteration. After a chosen number of iterations m, the accumulated data are cleared and the intermediate results are used as the initial data for the next m iterations. This procedure is repeated until convergence is achieved. The difficulty is in choosing an appropriate value for m. If m is too small, GMRES(m) may be slow to converge, or fail to converge entirely. A value of m that is larger than necessary involves excessive work (and uses more storage). Unfortunately, there are no definite rules governing the choice of m; choosing when to restart is a matter of experience.

For a discussion of GMRES for vector and shared memory computers see Dongarra et al. (1991). For more general architectures, see Demmel et al. (1993).


REFERENCES:

Arnoldi, W. "The Principle of Minimized Iterations in the Solution of the Matrix Eigenvalue Problem." Quart. Appl. Math. 9, 17-29, 1951.

Barrett, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; and van der Vorst, H. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. Philadelphia, PA: SIAM, 1994. http://www.netlib.org/linalg/html_templates/Templates.html.

Demmel, J.; Heath, M.; and van der Vorst, H. "Parallel Numerical Linear Algebra." In Acta Numerica, Vol. 2. Cambridge, England: Cambridge University Press, 1993.

Dongarra, J.; Duff, I.; Sorensen, D.; and van der Vorst, H. Solving Linear Systems on Vector and Shared Memory Computers. Philadelphia, PA: SIAM, 1991.

Saad, Y. and Schultz, M. "GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems." SIAM J. Sci. Statist. Comput. 7, 856-869, 1986.

Walker, H. F. "Implementation of the GMRES Method using Householder Transformations." SIAM J. Sci. Statist. Comput. 9, 152-163, 1988.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.