المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

التعامل مع الأراضي الملوثة
5-3-2016
متطلبات معيار الإبلاغ المالي الدولي رقم (2) "المدفوعات على اساس الاسهم"
2023-11-24
Mechanism : Hydration of Alkyne
21-7-2019
Polygon Inscribing
12-2-2020
Erfi
28-4-2019
Abu Ali al-Hasan ibn al-Haytham
16-10-2015

Chebyshev Iteration  
  
1197   05:09 مساءً   date: 30-11-2021
Author : Ashby, S
Book or Source : "CHEBYCODE: A Fortran Implementation of Manteuffel,s Adaptive Chebyshev Algorithm." Tech. Rep. UIUCDCS-R-85-1203, University of Illinois, 1985.
Page and Part : ...


Read More
Date: 1-12-2021 1725
Date: 11-2-2016 1217
Date: 19-11-2021 2505

Chebyshev Iteration

Chebyshev iteration is a method for solving nonsymmetric problems (Golub and van Loan 1996, §10.1.5; Varga, 1962, Ch. 5). Chebyshev iteration avoids the computation of inner products as is necessary for the other nonstationary methods. For some distributed memory architectures these inner products are a bottleneck with respect to efficiency. The price one pays for avoiding inner products is that the method requires enough knowledge about the spectrum of the coefficient matrix A that an ellipse enveloping the spectrum can be identified; this difficulty can be overcome, however, via an adaptive construction developed by Manteuffel (1977) and implemented by Ashby (1985). Chebyshev iteration is suitable for any nonsymmetric linear system for which the enveloping ellipse does not include the origin.

Chebyshev iteration is similar to the conjugate gradient method except that no inner products are computed. Scalars c and d must be selected so that they define a family of ellipses with common center d>0 and foci d+c and d-c which contain the ellipse that encloses the spectrum (or more generally, the field of values) of A and for which the rate r of convergence is minimal:

 r=(a+sqrt(a^2-c^2))/(dsqrt(d^2-c^2)),

where a is the length of the x-axis of the ellipse.

The pseudocode below assumes that the ellipse degenerates to the interval [lambda_(min),lambda_(max)], i.e., that all eigenvalues are real. For code including the adaptive determination of the iteration parameters c and d, see Ashby (1985).

The Chebyshev method has the advantage over the generalized minimal residual method (GMRES) that only short recurrences are used. On the other hand, GMRES is guaranteed to generate the smallest residual over the current search space. The biconjugate gradient method (BCG), which also uses short recurrences, does not minimize the residual in a suitable norm. However, unlike Chebyshev iteration, they do not require estimation of parameters (the spectrum of A). Finally, GMRES and BCG may be more effective in practice, because of superlinear convergence behavior, which cannot be expected for Chebyshev iteration.

For symmetric positive definite systems the ellipse enveloping the spectrum degenerates to the interval [lambda_(min),lambda_(max)] on the positive x-axis, where [lambda_(min) and lambda_(max)] are the smallest and largest eigenvalues of M^(-1)A, where M is a preconditioner. In circumstances where the computation of inner products is a bottleneck, it may be advantageous to start with the conjugate gradient method, compute estimates of the extremal eigenvalues from the CG coefficients, and then after sufficient convergence of these approximations switch to Chebyshev iteration. A similar strategy may be adopted for a switch from GMRES or BCG methods to Chebyshev iteration.

In the symmetric case (where A and the preconditioner M are both symmetric), Chebyshev iteration has the same upper bound as the conjugate gradient method provided that c and d are computed from lambda_(min) and lambda_(max).

There is a severe penalty for overestimating or underestimating the field of values. For example, if in the symmetric case lambda_(max) is underestimated, then the method may diverge; if it is overestimated, then the convergence may be very slow. Similar statements can be made for the nonsymmetric case. This implies that one needs fairly accurate bounds on the spectrum of M^(-1)A for the method to be effective (in comparison with the conjugate gradient method or generalized minimal residual method).

In Chebyshev iteration the iteration parameters are known as soon as one knows the ellipse containing the eigenvalues (or rather, the field of values) of the operator. Therefore the computation of inner products, as is necessary in the generalized minimal residual method and conjugate gradient method, is avoided. This avoids the synchronization points required of conjugate gradient-type methods, so machines with hierarchical or distributed memory may achieve higher performance (it also suggests strong parallelization properties (Saad 1989, Dongarra et al. 1991). Specifically, as soon as one segment of w is computed, we may begin computing, in sequence, corresponding segments of px, and r.


REFERENCES:

Ashby, S. "CHEBYCODE: A Fortran Implementation of Manteuffel's Adaptive Chebyshev Algorithm." Tech. Rep. UIUCDCS-R-85-1203, University of Illinois, 1985.

Barrett, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; and van der Vorst, H. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. Philadelphia, PA: SIAM, 1994. http://www.netlib.org/linalg/html_templates/Templates.html.

Dongarra, J.; Duff, I.; Sorensen, D.; and van der Vorst, H. Solving Linear Systems on Vector and Shared Memory Computers. Philadelphia, PA: SIAM, 1991.

Golub, G. H. and van Loan, C. F. Matrix Computations, 3rd ed. Baltimore, MD: Johns Hopkins, 1996.

Manteuffel, T. "The Tchebychev Iteration for Nonsymmetric Linear Systems." Numer. Math. 28, 307-327, 1977.

Saad, Y. "Krylov Subspace Methods on Supercomputers." SIAM J. Sci. Statist. Comput. 10, 1200-1232, 1989.

Varga, R. Matrix Iterative Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1962.ش




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.