Read More
Date: 14-11-2021
1055
Date: 31-8-2021
795
Date: 5-10-2021
1483
|
Hyperammonemia
The capacity of the hepatic urea cycle exceeds the normal rates of ammonia generation, and the levels of blood ammonia are normally low (5–35 μmol/l). However, when liver function is compromised, due either to genetic defects of the urea cycle or liver disease, blood levels can be >1,000 μmol/l. Such hyperammonemia is a medical emergency, because ammonia has a direct neurotoxic effect on the CNS. For example, elevated concentrations of ammonia in the blood cause the symptoms of ammonia intoxication, which include tremors, slurring of speech, somnolence (drowsiness), vomiting, cerebral edema, and blurring of vision. At high concentrations, ammonia can cause coma and death. There are two major types of hyperammonemia.
1. Acquired: Liver disease is a common cause of acquired hyperammonemia in adults and may be due, for example, to viral hepatitis or to hepatotoxins such as alcohol. Cirrhosis of the liver may result in formation of collateral circulation around the liver. As a result, portal blood is shunted directly into the systemic circulation and does not have access to the liver. Therefore, the conversion of ammonia to urea is severely impaired, leading to elevated levels of ammonia.
2. Congenital: Genetic deficiencies of each of the five enzymes of the urea cycle (and of NAGS) have been described, with an overall incidence of ~1:25,000 live births. X-linked OTC deficiency is the most common of these disorders, predominantly affecting males, although female carriers may become symptomatic. All of the other urea cycle disorders follow an autosomal-recessive inheritance pattern. In each case, the failure to synthesize urea leads to hyperammonemia during the first weeks following birth. [Note: The hyperammonemia seen with arginase deficiency is less severe because arginine contains two waste nitrogens and can be excreted in the urine.] Historically, urea cycle defects had high morbidity (neurologic manifestations) and mortality. Treatment included restriction of dietary protein in the presence of sufficient calories to prevent protein catabolism. Administration of compounds that bind covalently to nonessential amino acids, producing nitrogencontaining molecules that are excreted in the urine, has improved survival. For example, phenylbutyrate given orally is converted to phenylacetate. This condenses with glutamine to form phenylacetylglutamine, which is excreted (Fig. 1).
Figure 1: Treatment of patients with urea cycle defects by administration of phenylbutyrate to aid in excretion of ammonia (NH3).
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|