Read More
Date: 18-10-2021
2262
Date: 31-8-2021
2121
Date: 26-12-2021
982
|
Ammonia transport to the liver
Two mechanisms are available in humans for the transport of ammonia from peripheral tissues to the liver for conversion to urea. Both are important in, but not exclusive to, skeletal muscle. The first uses glutamine synthetase to combine ammonia with glutamate to form glutamine, a nontoxic transport form of ammonia (Fig. 1). The glutamine is transported in the blood to the liver where it is cleaved by glutaminase to glutamate and ammonia. The glutamate is oxidatively deaminated to ammonia and α-ketoglutarate by GDH. The ammonia is converted to urea. The second transport mechanism involves the formation of alanine by the transamination of pyruvate produced from both aerobic glycolysis and metabolism of the succinyl coenzyme A (CoA) generated by the catabolism of the BCAA isoleucine and valine. Alanine is transported in the blood to the liver, where it is transaminated by ALT to pyruvate. The pyruvate is used to synthesize glucose, which can enter the blood and be used by muscle, a pathway called the glucose–alanine cycle. The glutamate product of ALT can be deaminated by GDH, generating ammonia. Thus, both alanine and glutamine carry ammonia to the liver.
Figure 1: Transport of ammonia (NH3) from muscle to the liver. ADP = adenosine diphosphate; Pi = inorganic phosphate; CoA = coenzyme A.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|