Read More
Date: 16-11-2021
1210
Date: 19-11-2021
1312
Date: 16-11-2021
1034
|
Let be an ergodic endomorphism of the probability space and let be a real-valued measurable function. Then for almost every , we have
(1) |
as . To illustrate this, take to be the characteristic function of some subset of so that
(2) |
The left-hand side of (1) just says how often the orbit of (that is, the points , , , ...) lies in , and the right-hand side is just the measure of . Thus, for an ergodic endomorphism, "space-averages = time-averages almost everywhere." Moreover, if is continuous and uniquely ergodic with Borel measure and is continuous, then we can replace the almost everywhere convergence in (1) with "everywhere."
REFERENCES:
Cornfeld, I.; Fomin, S.; and Sinai, Ya. G. Appendix 3 in Ergodic Theory. New York: Springer-Verlag, 1982.
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
قسم الشؤون الفكرية يقيم الحفل الختامي لمسابقة حفظ قصار السور للناشئة في أفريقيا
|
|
|