Read More
Date: 26-8-2021
1208
Date: 15-2-2016
996
Date: 16-10-2021
1238
|
An Anosov diffeomorphism is a diffeomorphism of a manifold to itself such that the tangent bundle of is hyperbolic with respect to . Very few classes of Anosov diffeomorphisms are known. The best known is Arnold's cat map.
A hyperbolic linear map with integer entries in the transformation matrix and determinant is an Anosov diffeomorphism of the -torus. Not every manifold admits an Anosov diffeomorphism. Anosov diffeomorphisms are expansive, and there are no Anosov diffeomorphisms on the circle.
It is conjectured that if is an Anosov diffeomorphism on a compact Riemannian manifold and the nonwandering set of is , then is topologically conjugate to a finite-to-one factor of an Anosov automorphism of a nilmanifold. It has been proved that any Anosov diffeomorphism on the -torus is topologically conjugate to an Anosov automorphism, and also that Anosov diffeomorphisms are structurally stable.
REFERENCES:
Anosov, D. V. "Geodesic Flow on Closed Riemannian Manifolds of Negative Curvature." Trudy Mat. Inst. Steklov 90, 1-209, 1970.
Smale, S. "Differentiable Dynamical Systems." Bull. Amer. Math. Soc. 73, 747-817, 1967.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|