المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

تثبيط الضوئي Photoinhibition
7-8-2019
قضية خلق السماوات والأرض عند موريس بوكاي
7-11-2014
أصـــــــــل الــــــــبراءة
24-8-2016
احكام صيام الشهرين المتتابعين
2024-10-01
الجهل عمى‏
24-11-2015
الامام علي والحسين (عليهما السلام) يبشرون بثورة المختار.
2023-03-23

NADPH Role in Hydrogen Peroxide Reduction  
  
1181   02:31 صباحاً   date: 28-9-2021
Author : Denise R. Ferrier
Book or Source : Lippincott Illustrated Reviews: Biochemistry
Page and Part :

NADPH  Role in Hydrogen Peroxide Reduction


Hydrogen peroxide (H2O2) is one of a family of reactive oxygen species (ROS) that are formed from the partial reduction of molecular oxygen  ([O2], Fig. 1A). These compounds are formed continuously as byproducts of aerobic metabolism, through reactions with drugs and environmental toxins, or when the level of antioxidants is diminished, all creating the condition of oxidative stress. These highly reactive oxygen intermediates can cause serious chemical damage to DNA, proteins, and unsaturated lipids and can lead to cell death. ROS have been implicated in a number of pathologic processes, including reperfusion injury, cancer, inflammatory disease, and aging. The cell has several protective mechanisms that minimize the toxic potential of these compounds. [Note: ROS can also be generated in the killing of microbes by white blood cells (WBC).]


Figure 1: A. Formation of reactive intermediates from oxygen. e− = electrons.
B. Actions of antioxidant enzymes. G-SH = reduced glutathione; G-S-S-G =oxidized glutathione. [Note: See Fig. 13.6B for the regeneration of G-SH.] 1. Enzymes that catalyze antioxidant reactions Reduced glutathione (GSH), a tripeptide-thiol (γ-glutamylcysteinylglycine) present in most cells, can chemically detoxify H2O2 (Fig. 1B). This reaction, catalyzed by the selenoprotein  glutathione peroxidase, forms oxidized glutathione (G-S-S-G), which no longer has protective properties. The cell regenerates G-SH in a reaction catalyzed by glutathione reductase, using NADPH as a source of reducing equivalents. Thus, NADPH indirectly provides electrons for the reduction of H2O2 (Fig. 2).

Additional enzymes, such as superoxide dismutase and catalase, catalyze the conversion of other ROS to harmless products (see Fig.1B). As a group, these enzymes serve as a defense system to guard against the toxic effects of ROS.

Figure 2: A. Structure of reduced glutathione (G-SH). [Note: Glutamate is linked to cysteine through a γ-carboxyl, rather than an α-carboxyl.] B.The roles of G-SH and reduced nicotinamide adenine dinucleotide phosphate (NADPH) in the reduction of hydrogen peroxide (H2O2) to water. G-S-S-G = oxidized glutathione.
2. Antioxidant chemicals A number of intracellular reducing agents, such as ascorbate , vitamin E , and β-carotene , are able to reduce and, thereby, detoxify ROS in the laboratory.
Consumption of foods rich in these antioxidant compounds has been correlated with a reduced risk for certain types of cancers as well as decreased frequency of certain other chronic health problems. Therefore, it is tempting to speculate that the effects of these compounds are, in part, an expression of their ability to quench the toxic effect of ROS.
However, clinical trials with antioxidants as dietary supplements have failed to show clear beneficial effects. In the case of dietary supplementation with β-carotene, the rate of lung cancer in smokers increased rather than decreased. Thus, the health-promoting effects of dietary fruits and vegetables likely reflect a complex interaction among many naturally occurring compounds, which has not been duplicated by consumption of isolated antioxidant compounds.




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.