Read More
Date: 11-10-2021
1276
Date: 6-10-2021
1176
Date: 22-12-2021
1660
|
A fractal is an object or quantity that displays self-similarity, in a somewhat technical sense, on all scales. The object need not exhibit exactly the same structure at all scales, but the same "type" of structures must appear on all scales. A plot of the quantity on a log-log graph versus scale then gives a straight line, whose slope is said to be the fractal dimension. The prototypical example for a fractal is the length of a coastline measured with different length rulers. The shorter the ruler, the longer the length measured, a paradox known as the coastline paradox.
Illustrated above are the fractals known as the Gosper island, Koch snowflake, box fractal, Sierpiński sieve, Barnsley's fern, and Mandelbrot set.
REFERENCES:
Barnsley, M. F. and Rising, H. Fractals Everywhere, 2nd ed. Boston, MA: Academic Press, 1993.
Bogomolny, A. "Fractal Curves and Dimension." http://www.cut-the-knot.org/do_you_know/dimension.shtml.
Brandt, C.; Graf, S.; and Zähle, M. (Eds.). Fractal Geometry and Stochastics. Boston, MA: Birkhäuser, 1995.
Bunde, A. and Havlin, S. (Eds.). Fractals and Disordered Systems, 2nd ed. New York: Springer-Verlag, 1996.
Bunde, A. and Havlin, S. (Eds.). Fractals in Science. New York: Springer-Verlag, 1994.
Devaney, R. L. Complex Dynamical Systems: The Mathematics Behind the Mandelbrot and Julia Sets. Providence, RI: Amer. Math. Soc., 1994.
Devaney, R. L. and Keen, L. Chaos and Fractals: The Mathematics Behind the Computer Graphics. Providence, RI: Amer. Math. Soc., 1989.
Edgar, G. A. (Ed.). Classics on Fractals. Reading, MA: Addison-Wesley, 1993.
Eppstein, D. "Fractals." http://www.ics.uci.edu/~eppstein/junkyard/fractal.html.
Falconer, K. J. The Geometry of Fractal Sets, 1st pbk. ed., with corr. Cambridge, England: Cambridge University Press, 1986.
Feder, J. Fractals. New York: Plenum Press, 1988.
Giffin, N. "The Spanky Fractal Database." http://spanky.triumf.ca/www/welcome1.html.
Hastings, H. M. and Sugihara, G. Fractals: A User's Guide for the Natural Sciences. New York: Oxford University Press, 1994.
Kaye, B. H. A Random Walk Through Fractal Dimensions, 2nd ed. New York: Wiley, 1994.
Lauwerier, H. A. Fractals: Endlessly Repeated Geometrical Figures. Princeton, NJ: Princeton University Press, 1991.
le Méhaute, A. Fractal Geometries: Theory and Applications. Boca Raton, FL: CRC Press, 1992.
Mandelbrot, B. B. Fractals: Form, Chance, & Dimension. San Francisco, CA: W. H. Freeman, 1977.
Mandelbrot, B. B. The Fractal Geometry of Nature. New York: W. H. Freeman, 1983.
Massopust, P. R. Fractal Functions, Fractal Surfaces, and Wavelets. San Diego, CA: Academic Press, 1994.
Pappas, T. "Fractals--Real or Imaginary." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 78-79, 1989.
Peitgen, H.-O.; Jürgens, H.; and Saupe, D. Chaos and Fractals: New Frontiers of Science. New York: Springer-Verlag, 1992.
Peitgen, H.-O.; Jürgens, H.; and Saupe, D. Fractals for the Classroom, Part 1: Introduction to Fractals and Chaos. New York: Springer-Verlag, 1992.
Peitgen, H.-O. and Richter, D. H. The Beauty of Fractals: Images of Complex Dynamical Systems. New York: Springer-Verlag, 1986.
Peitgen, H.-O. and Saupe, D. (Eds.). The Science of Fractal Images. New York: Springer-Verlag, 1988.
Pickover, C. A. (Ed.). The Pattern Book: Fractals, Art, and Nature. World Scientific, 1995.
Pickover, C. A. (Ed.). Fractal Horizons: The Future Use of Fractals. New York: St. Martin's Press, 1996.
Rietman, E. Exploring the Geometry of Nature: Computer Modeling of Chaos, Fractals, Cellular Automata, and Neural Networks. New York: McGraw-Hill, 1989.
Russ, J. C. Fractal Surfaces. New York: Plenum, 1994.
Schroeder, M. Fractals, Chaos, Power Law: Minutes from an Infinite Paradise. New York: W. H. Freeman, 1991.
Sprott, J. C. "Sprott's Fractal Gallery." http://sprott.physics.wisc.edu/fractals.htm.
Stauffer, D. and Stanley, H. E. From Newton to Mandelbrot, 2nd ed. New York: Springer-Verlag, 1995.
Stevens, R. T. Fractal Programming in C. New York: Henry Holt, 1989.
Takayasu, H. Fractals in the Physical Sciences. Manchester, England: Manchester University Press, 1990.
Taylor, M. C. and Louvet, J.-P. "sci.fractals FAQ." http://www.faqs.org/faqs/sci/fractals-faq/.
Tricot, C. Curves and Fractal Dimension. New York: Springer-Verlag, 1995.
Triumf Mac Fractal Programs. http://spanky.triumf.ca/pub/fractals/programs/MAC/.
Vicsek, T. Fractal Growth Phenomena, 2nd ed. Singapore: World Scientific, 1992.
Weisstein, E. W. "Books about Fractals." http://www.ericweisstein.com/encyclopedias/books/Fractals.html.
Yamaguti, M.; Hata, M.; and Kigami, J. Mathematics of Fractals. Providence, RI: Amer. Math. Soc., 1997.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|