المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
زكاة الفطرة
2024-11-05
زكاة الغنم
2024-11-05
زكاة الغلات
2024-11-05
تربية أنواع ماشية اللحم
2024-11-05
زكاة الذهب والفضة
2024-11-05
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05

الايراد الدائمي والرد الدائمي
7-10-2014
Past Continues
30-3-2021
انتقادات وتـقـييم فـكرة ذوي المـصلحـة في الحوكمـة ومـفهوم تعظيـم قيمـة المـنشـأة
2023-07-23
سؤال الله وطلب الحوائج منه
2024-09-17
حيلة لمعاوية
18-10-2015
قيس بن المكشوح
18-7-2020

Rule 110  
  
1415   03:58 مساءً   date: 25-8-2021
Author : Cook, M
Book or Source : "Universality in Elementary Cellular Automata." Complex Systems 15
Page and Part : ...


Read More
Date: 29-11-2021 1726
Date: 28-11-2021 790
Date: 25-11-2021 988

Rule 110

ElementaryCARule110

Rule 110 is one of the elementary cellular automaton rules introduced by Stephen Wolfram in 1983 (Wolfram 1983, 2002). It specifies the next color in a cell, depending on its color and its immediate neighbors. Its rule outcomes are encoded in the binary representation 110=01101110_2. This rule is illustrated above together with the evolution of a single black cell it produces after 15 steps (OEIS A075437; Wolfram 2002, p. 55).

Rule 110 after 250 iterations

250 iterations of rule 110 are illustrated above.

The mirror image is rule 124, the complement is rule 137, and the mirrored complement is rule 193.

Starting with a single black cell, successive generations are given by interpreting the numbers 1, 6, 28, 104, 496, 1568, 7360, 27520, ... (OEIS A117999) in binary. Omitting trailing zeros (since the right n cells in step n of the triangle are always 0) gives the sequence 1, 3, 7, 13, 31, 49, 115, 215, 509, 775, 1805, ... (OEIS A006978), which are simply the previous numbers divided by 2^n, and the corresponding sequence is 1, 11, 111, 1101, 11111, ... (OEIS A070887).

Amazingly, the rule 110 cellular automaton is universal, as first conjectured by Wolfram (1986, pp. 485-557) and subsequently proven by Stephen Wolfram and his assistant Matthew Cook. This important discovery followed a program begun by Wolfram in 1985 to establish universality of rule 110. The main elements of the proof were put in place in 1994, with additional details and corrections continuing for several years (Wolfram 2002, p. 1115; Cook 2004).

The evolution of the rule 110 automaton for a specific initial condition is depicted on the cover of Wolfram (2002), as described in Wolfram (2002, p. 851).


REFERENCES:

Cook, M. "Universality in Elementary Cellular Automata." Complex Systems 15, 1-40, 2004.

McIntosh, H. V. "Rule 110 as It Relates to the Presence of Gliders." May 14, 2001. http://delta.cs.cinvestav.mx/~mcintosh/comun/abstracts/abstractrule110.html.

Sloane, N. J. A. Sequences A006978/M006978, A070887, A075437, and A117999 in "The On-Line Encyclopedia of Integer Sequences."

Wolfram, S. "Statistical Mechanics of Cellular Automata." Rev. Mod. Phys. 55, 601-644, 1983.

Wolfram, S. Theory and Application of Cellular Automata. World Scientific, 1986.

Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 32-38, 52, 675-691, 851, and 1115-1116, 2002.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.